跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張能傑
研究生(外文):Chang, Neng-Chieh
論文名稱:部分旁通概念應用在裸管管陣熱交換器之性能探討
論文名稱(外文):Effect of partial bypass on the thermal performance of bare-tube bundle
指導教授:王啟川王啟川引用關係
指導教授(外文):Wang, Chi-Chuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:裸管管陣熱交換器旁通設計概念
外文關鍵詞:bare-tube bundlepartial bypass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
為改善熱交換器的性能,本研究將部分旁通(partial bypass)概念導入傳統氣冷式裸管管陣熱交換器之設計,使得部分氣流流經熱交換器時不會接觸到前段熱交換器而直接流往後段熱交換器。其總熱傳性能預計可能不變或小幅度降低,然其總壓降將明顯降低。
為評估此性能,本研究藉由實驗的設計,分析傳統裸管熱交換器與含旁通設計之熱交換器之間性能的差異。結果顯示旁通效應除了明顯出現在低風速下之外,不論任何風速,越均勻的管陣排列方式越可以使流場更加均勻混合,性能會越好。而最重要的是,隨著幫浦功率越大,含旁通設計之熱交換器的熱阻也有接近傳統式熱交換器之熱阻的趨勢,這樣的趨勢指出抽管後的效益在幫浦功率很大的操作條件下還是可以顯現出來的,即使可能無法比得上傳統管陣的性能,但是卻可以非常接近,並且還可以節省一些管子材料。

The purpose of this research is to improve the performance of tube bundle subject to air-cooling. The tube bundle is consisted of multi-row bare-tubes. The improvement is made available by introducing the “partial bypass” concept which employs the heat transfer augmentation by increasing the effective temperature difference between the air side and tube side in the rear part of heat exchanger. The idea is to get rid of some tubes in the front part of the heat exchanger, namely the heat transfer area is reduced; thus, part of inlet stream directly bypasses the front part of heat exchanger. Under this circumstance, the total heat transfer performance comparing with traditional bare-tube heat exchanger may be about the same, but the total pressure drop will certainly be much lower.
In order to investigate the performance of this innovative heat exchanger design, the experiment is carried out in this study to prove the proposed concept. The results show that the partial bypass idea is obviously effective under low airflow velocity. In addition, regardless of any airflow velocity, the more uniform arrangement of the tube bundle allows the flow field become more uniform mixing, and it makes the performance much better. The most important of all, with the greater the pumping power, the thermal resistance of the heat exchanger containing partial bypass design is slowly close to that of the conventional tube bundle. This trend shows that the benefits of partial-bypass designs can still be available under the operating condition of large pumping power. Even though the performance of the improved designs can never surpass that of the conventional tube bundle, they will become very close; moreover, we can also save some tube materials.

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xiii
第一章 緒論 1
1.1前言 1
1.2研究背景 3
1.3研究動機 5
1.4本文架構 6
第二章 文獻回顧 12
第三章 實驗部分 16
3.1 實驗設備 16
3.2實驗步驟 19
3.3理論分析 21
第四章 結果與討論 44
4.1傳統裸管管陣之實驗與文獻比較 45
4.2減少5%管支數的熱交換器之旁通性能比較 45
4.3減少10%管支數的熱交換器之旁通性能比較 48
4.4減少20%管支數的熱交換器之旁通性能比較 49
4.5各組抽管之熱交換器的幫浦功率與總熱組比較 50
第五章 結論 68
參考文獻 70

[1] 王啟川,熱交換設計,台北:五南圖書出版股份有限公司,2007。
[2] F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, sixth ed., Wiley, New York, 2007, pp. 436-443.
[3] M. Coutanceau, J.R. Defaye, Circular Cylinder Wake Configurations: A Flow Visualization Survey, Appl. Mech. Rev. 44 (6) (1991), pp. 255-305.
[4] H. Schlichting, Boundary Layer Theory, Springer, New York, 2000.
[5] A. Zukauskas, “Heat Transfer from Tubes in Cross Flow,” in J.P. Hartnett and T.F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol. 8, Academic Press, New York, 1972, pp. 93-160.
[6] A. Zukauskas, “Heat Transfer from Tubes in Cross Flow,” in J.P. Hartnett and T.F. Irvine, Jr., Eds., Advances in Heat Transfer, Vol. 18, Academic Press, New York, 1987, pp. 87-159.
[7] W.M. Kays, M.E. Crawford, and B. Weigand, Convective Heat and Mass Transfer, 4th ed.,McGraw-Hill Higher Education, Boston, 2005.
[8] A. Zukauskas, “Convectuve Heat Transfer in Cross Flow,” in S. Kakac, R.K. Shah, and W. Aung, Eds., Handbook of Single-Phase Convective Heat Transfer, Wiley, New York, 1987.
[9] S.W. Churchill, M. Bernstein, A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow, J. Heat Transfer 99 (2) (1977), pp. 300-306.
[10] E.D. Grimison, Correlation and utilization of new data on flow resistance and heat transfer for cross flow over tube banks, Trans. ASME 59 (1937), pp. 583-594.
[11] A. Zukauskas, R. Ulinskas, Banks of plain and finned tubes. In: Hewitt, G.F. (Ed.), Heat Exchanger Design Handbook. HEDH, New York, 1998, pp. 2.2.4-1–2.2.4-17.
[12] H. Hausen, Heat Transfer in Counterflow Parallel Flow and Cross Flow, McGraw-Hill, Inc, New York, 1983.
[13] M. Fujii, T. Fujii, A numerical analysis of laminar flow and heat transfer of air in an in-line tube bank, Numer. Heat Transfer 7 (1984), pp. 89-102.
[14] T.S. Wung, C.J. Chen, Finite analytic solution of convective heat transfer for tube arrays in crossflow: Part II – Heat transfer analysis, ASME J. Heat Transfer 111 (1989), pp. 641-648.
[15] D. Murray, Comparison of heat transfer in staggered and in-line tube banks with gas particle flow, Exp. Ther. Fluid Sci. 6 (2) (1993), pp. 177-185.
[16] A.S. Wilson, M.K. Bassiouny, Modeling of heat transfer for flow across tube banks, Chem. Eng. Process. 39 (2000), pp. 1-14.
[17] W.A. Khan, J.R. Culham, M.M. Yovanovich, Convection heat transfer from tube banks in crossflow: Analytical approach, International Journal of Heat and Mass Transfer 49 (2006), pp. 4831-4838.
[18] M.A. Mehrabian, Heat transfer and pressure drop characteristics of cross flow of air over a circular tube in isolation and/or in a tube bank, The Arabian Journal for Science and Engineering 32 (2B) (2007), pp. 365-376.
[19] V. Gnielinski, Equations for calculating heat transfer in single tube rows and banks of tubes in transverse flow, International Chemical Engineering 19 (3) (1979), pp. 380-391.
[20] C.C. Wang, W.S. Lee, W.J. Sheu, Airside performance of staggered tube bundle having shallow tube rows, Chemical Engineering Communications 187 (1) (2001), pp. 129-147.
[21] W.S. Lee, R. Hu, C.C. Wang, Airside performance of inline tube bundle having shallow tube rows, in: Proceedings of the 2001 ASIA-Pacific Conference on the Built Environment, Progress on Energy Efficiency and Indoor Quality, Singapore, 2001, Vol. 1, pp. 373-381.
[22] C.C. Wang, K.Y. Chen, J.S. Liaw, C.Y. Tseng, A novel “partial bypass” concept to augment the performance of air-cooled heat exchangers, International Journal of Heat and Mass Transfer 55 (2012), pp. 5367–5372.
[23] C.C. Wang, Enhanced heat transfer performance of air-cooled heat exchangers using “partial bypass” concept, Heat Transfer Engineering 33 (15) (2012), pp. 1217-1219.
[24] ANSI / AMCA 210-85”,Laboratory Method of Testing Fans for Rating,” American National Standard.
[25] V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (1976), pp. 359-368.
[26] B. Prabir, C. Kefa, J. Louis, Boilers and Burners: Design and Theory Mechanical Engineering Series, Springer-Verlag, 2000, pp. 466-467.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top