跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昀樺
研究生(外文):Yun-Hua Wu
論文名稱:調控神經醯胺合成酶以探討神經鞘脂質途徑對生肌作用之影響
論文名稱(外文):Regulations of sphingolipid pathway in myogenic differentiation by interfering ceramide synthase expression and activity
指導教授:陳洵一
指導教授(外文):Shuen-Ei Chen
口試委員:范揚廣陳靜宜歐柏榮
口試委員(外文):Yan-Kuang FanChing-Yi ChenBor-Rung Ou
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:神經醯胺合成酶脂筏生肌作用細胞骨架重整黴菌伏馬鐮孢毒素
外文關鍵詞:ceramide synthaseraftsmyogenesiscytoskeleton remodelingfumonisin B1
相關次數:
  • 被引用被引用:2
  • 點閱點閱:3181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經鞘脂質 (sphingolipids) 家族成員十分複雜,兼具形成細胞膜結構與訊號傳遞功能角色。而神經鞘磷脂 (sphingomyelin,SM) 為細胞脂雙層主要結構一員,更富含於脂筏 (rafts) 中,神經鞘磷脂合成與代謝中樞分子神經醯胺 (ceramide) ,為sphingomyelin之前驅物,除ceramide外,家族成員中如sphingosine、sphingosine 1-phosphate (S1P) 及gangliosides 等皆具生物活性,能影響細胞分化、增生、凋亡等。過去研究顯示黴菌伏馬鐮孢毒素 (Fumonisin B1, FB1) 會抑制神經醯胺合成酶 (ceramide synthase ; CerS) 活性,進而干擾神經磷脂質之代謝,並且影響細胞功能。然而其毒理機制卻未盡周詳,故本研究以肌肉細胞為模式,探討干擾神經醯胺合成酶影響生肌作用之機制。生肌作用分化過程 (myogenic differentiation) 包括肌肉專一基因的表達、細胞形態延展成梭狀,而後遷徙、列隊 (alignment) 進一步相互融合成多核肌纖維 (myofibers)。其中細胞骨架的重整參與這一系列的過程,膜上的脂筏與蛋白質的分布亦會隨分化過程而改變。
研究結果顯示:sphingomyelinase抑制劑GW4869,會抑制C2C12細胞分化;加入外源性的sphingomyelin並不會影響細胞分化;然而加入ganglioside GM3 或 S1P則會促進細胞分化,並抵銷 FB1 對分化的抑制效果,有效挽救細胞分化。基因上利用Longevity assurance genes 1 (LASS1) siRNA干擾神經醯胺合成酶,而藥理上以FB1 抑制其活性,結果顯示:LASS1 siRNA與FB1干擾皆會造成ceramide含量下降,令人驚訝的是, LASS1 siRNA 促進細胞分化; 而FB1 則為抑制效果。細胞內其他的神經鞘脂質如 sphingomyelin , 其含量在 LASS1 siRNA與 FB1 處理下皆稍微降低,而 LASS1 siRNA 以及FB1處理皆會增加 sphingosine 含量。另外測定 IGF-I的含量發現,以 FB1 處理顯著抑制 IGF-I 的分泌,而相反的,LASS1 siRNA對IGF-I的分泌則是促進的效果。細胞形態上顯示: LASS1 siRNA 和SMS2 overexpression處理皆增強細胞骨架集中附著點 (focal adhesions) ,而以SMS2 (sphingomyelin synthase 2) siRNA干擾 sphingomyelin 合成,則會抑制 focal adhesions。以 LASS1 siRNA 干擾或經SMS2 overexpression的細胞其遷徙能力顯著增加;而 FB1、SMS2 siRNA、D609 (SMS inhibitor) 處理則顯著降低細胞遷徙能力。接著以 CTxB (cholera toxin subunit B) 標識細胞膜脂筏,再以 time lapse 下追蹤,結果顯示:細胞膜上富含 sphingolipids 之脂筏主要分佈於細胞間接觸邊緣,在分化時會往細胞前後兩端聚集。脂筏移動可導致漿膜脂雙層小區域物化特性改變,在區域環境內能幫助細胞往同方向進行移動、排列與融合。綜合以上結果,調控神經鞘脂質代謝中的 ceramide synthase ,會影響其上下游代謝物含量,進而影響細胞膜脂筏形成與細胞骨架重整 (remodeling),接著進一步影響細胞遷徙、排列與融合等過程,而最終影響細胞分化。
1. 前言………………………………………………………………………………….1
2. 文獻探討…………………………………………………………………………….2
2.1. 生肌作用 (Myogenesis) ....................................................................................2
2.1.1. 骨骼肌 (Skeletal muscle)………………………………...4
2.1.2. 肌纖維 (Myofibers)……………………………………5
2.1.3. 細胞骨架 (Cytoskeleton) ………………………………..6
2.1.4. 衛星細胞 (Satellite cells) ………………………………………..7
2.2. 生肌作用之訊號傳遞………………………………………………………….8
2.2.1. 生肌作用的正調控 (Positive Signaling Pathways of Myogenesis)…10
2.2.2. 生肌作用的負調控 (Negative Signaling Pathways of Myogenesis)..11
2.2.3. 細胞內IGF-I 訊號傳遞 (Intracellular IGF-I signaling)………………11
2.3. 細胞膜與脂肪區域…………………………………………………………13
2.3.1. 脂筏 (Lipid rafts) ……………………………………………………13
2.4. 神經鞘脂質 (Sphingolipids) ………………………………………14
2.4.1. 神經鞘脂質之代謝 (Sphingolipids metabolism) ……………………15
2.4.2. 神經鞘磷脂 (Sphingomyelin) ………………………………16
2.4.3. 神經節苷脂 (Ganglioside) ………………..………….17
2.4.4. 神經醯胺 (Ceramide) …………………………………………………18
2.5. 黴菌伏馬鐮孢毒素 (Fumonisin B1) ………………………………………21
2.6. 總結…………………………………………………………………………23
2.7. 研究目標……………………………………………………………………24
3. 材料方法…………………………………………………………………………25
3.1. 細胞培養 (Cell culture) ……………………………………………25
3.2. 化學藥劑處理 (Chemical treatments) ……………………………………25
3.3. 西方西漬法 (Western blot analysis) …………………………………25
3.4. 細胞遷移 (Migration assay) …………………………………………………26
3.5. 免疫螢光染色法 (Immunofluorescence staining) ………………………27
3.6. 短干擾性RNA處理 (Short interfering RNA intervention) …………………27
3.7. 細胞脂肪含量測定 (Cellular lipid content) ………………………………27
3.8. 神經鞘磷脂含量測定 (Sphingomyelin content) ……………………………28
3.9. 即時影像 (Time-lapse) ……………………………………………………28
3.10. IGF-I ELISA測定 (IGF-I ELISA) ………………………………………29
3.11. 統計分析 (Statical analysis) ………………………………………………29
4. 結果………………………………………………………………………………30
4.1. 神經鞘脂質成員對於機緣細胞分化之影響………………………………30
4.2. 抑制神經醯胺合成酶對於肌原母細胞分化、遷徙及分化指標蛋白表現之影 響………………………………………………………………………………33
4.3. 干擾神經鞘脂質途徑對於細胞中各脂質成員含量的影響………………..37
4.4. FB1干擾神經醯胺合成酶對IGF-I 訊號傳遞途徑的影響……………..40
4.5. 基因操作干擾神經醯胺合成酶與神經鞘磷脂合成酶影響肌原母細胞之細 胞集中附著點…………………………………………………………………42
4.6. 藉基因操作提升神經鞘磷脂合成酶表現………………………………48
4.7. 藉由藥理上抑制劑D609與基因操作調控神經鞘磷脂合成酶活性對於肌原母細胞遷徙之影響……………………………………………………………50
4.8. 肌原母細胞分化時期脂筏移動之情形…………………………………54
5. 討論……………………………………………………………………………57
5.1. 神經鞘脂質成員對於肌原母細胞分化之影響……………………………57
5.2. 細胞膜上脂筏之移動以及細胞骨架附著點………………………………58
5.3. 經醯胺合成酶活性對肌原母細胞分化及融合之影響……………………59
5.4. Fumonisin B1與LASS1 siRNA造成細胞分化不同結果之探討…………61
5.5. 總結…………………………………………………………………………62
6. 結論…………………………………………………………………………...…64
7. 參考文獻……………………………………………………………………...……65
龐飛 (2002)。 伏馬鐮孢毒素B1 (Fumonisin B1) 對豬的免疫傷害: 肺泡巨噬細胞細胞與周邊血液單核細胞的致害及其作用機制。行政院國基科學委員會專題研究計畫成果報告。國立台灣大學。台北。
賴建仰 (2010)。結構性脂質神經鞘磷脂調節肌原母細胞分化時期之融合過程。
碩士論文。國立中興大學。台中。
Abou-Khalil, R., F. Le Grand, G.Pallafacchina, S. Valable, F.-J., Authier, M. A.Rudnicki, R. K. Gherardi, S. Germain, F. Chretien, and A.Sotiropoulos .2009. Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal. Cell Stem Cell 5:298-309.
Adams, G. R. 2002. Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation. J. Appl. Phychol. 93: 1159-1167.
Albi, E., R. Lazzarini, and M.V. Magni. 2003. Reverse sphingomyelin-synthase in rat liver chromatin. FEBS Lett. 549: 152-6.
Armand, A.-S., I. Laziz,, and C. Chanoine. 2006. FGF6 in myogenesis. Biochimical et Biophysica Acta (BBA) – Mol. Cell Res. 1763:773-778.
Barenholz, Y. 2004. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical application. Subcell Biochem. 37:167-215.
Bartke, N., and Y. A. Hannun, 2009. Bioactive sphingolipids: metabolism and function. J. Lipid Res. 50: S91-S96.
Bentizinger, C. F., Y. X. Wang, and M. A. Rudnicki. 2012. Building Muscle: Molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. 4
Birkle, S., G. Zeng, L. Gao, R. K. Yu, and Aubry, J. 2003. Role of tumor-associated gangliosides in cancer progression. Biochimie 85:455-463.
Brack, A. S., I. M. Conboy, M. J. Conboy, J. Shen, and T. A. Rando. 2008. A Temporal Switch from Notch to Wnt Signaling in Muscle Stem Cells Is Necessary for Normal Adult Myogenesis. Cell Stem Cell 2: 50-59.
Brancho, D., N. Tanaka, A. Jaeschke, J. Ventura, N. Kelkar, N., Y. Tanaka, M. Kyuuma, T. Takeshita, R.A. Flavell, and R.J. Davis. 2003. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17: 1969-1978.
Cabane, C., A.-S. Coldefy, K.Yeow, and B .Derijard. 2004. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal. 16: 1405-1415.
Christov, C., F.Chretien, R.Abou-Khalil, G.Bassez, G.Vallet, F.-J. Authier, Y. Bassaglia, V. Shinin, S.Tajbakhsh, B.Chazaud, and R. K.Gherardi. 2007. Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners. Mol. Biol. Cell 18: 1397-1409.
Ciacci-Zanella, J. R., A. H. Merrill Jr, E. Wang, and C. Jones. 1998. Characterization of Cell-cycle Arrest by Fumonisin B1 in CV-1 Cells. Food Chem. Toxicol. 36: 791-804.
Coolican, S. A., D. S. Samuel, D. Z. Ewton, F. J. McWade, and J. R. Florini. 1997. The Mitogenic and Myogenic Actions of Insulin-like Growth Factors Utilize Distinct Signaling Pathways. J. Biol. Chem. 272: 6653-6662.
Cossu. G and U. Borello. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO. J. 18:6867-6872.
Coderch, L. O. Lopez, A. de la Maza, J.L. Parra. 2003. Ceramide and skin function. Am. J. Clin. Dermatol. 4:107-29.
Corre, I., C. Niaudet, and F. Paris. 2010. Plasma membrane signaling induced by ionizing radiation. Mutat. Res. 704: 61-67.
Cutler, R. G., J. Kelly, K. Storie, W. A. Pedersen, A. Tammara, K. Hatanpaa, J. C. Troncoso, and M. P. Mattson. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 101: 2070-2075.
Danieli-Betto, D., S. Peron, E. Germinario, M. Zanin, G. Sorci, S.Franzoso, D. Sandona, and R. Betto. 2010. Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 298: C550-C558.
Desai, K., M. C. Sullards, J. Allegood, E. Wang, E. M. Schmelz, M. Hartl, H.-U. Humpf, D. C. Liotta, Q. Peng, and A. H. Merrill Jr. 2002. Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta. 1585: 188-192.
Donati, C., E. Meacci, F. Nuti, L. Becciolini, M. Farnararo, and P. Bruni. 2005. Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. FASEB. J. 19: 449-451.
Engert, J. C., E. B. Berglund, and N. Rosenthal. 1996. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J. Cell. Biol. 135: 431-440.
Ewton, D. Z, and J. R. Florini. 1981. Effects of the somatomedins and insulin on myoblast differentiation in vitro. Dev. Biol. 86: 31-39.
Fernando, P., J. F. Kelly, K. Balazsi, R. S. Slack, and L. A. Megeney. 2002. Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. U. S. A. 99: 11025-11030.
Florini, J. R., K. A. Magri, D. Z. Ewton, P. L., James, K. Grindstaff, and P. S. Rotwein. 1991. "Spontaneous" differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J. Biol. Chem. 266: 15917-15923.
Florini, J.R., D.Z. Ewton, and S.A. Coolican. 1996. Growth Hormone and the Insulin-Like Growth Factor System in Myogenesis. Endocr. Rev. 17: 481-517.
Fletcher, D. A., and R. D. Mullins. 2010. Cell mechanics and the ctyroskeleton. Nature 463: 485-492.
Formigli, L., C. Sassoli, R. Squecco, F. Bini, M. Martinesi, F. Chellini, G. Luciani, F. Sbrana, S. Zecchi-Orlandini, F. Francini, and E. Meacci. 2009. Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J. Cell Sci. 122: 1322-1333.
Galvin, C. D., O. Hardiman, and C. M. Nolan. 2003. IGF-1 receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol. Cell. Endocrinol. 200: 19-29.
Hamrick, M. W. 2010. A role for myokines in muscle-bone interactions. Exerc Sport Sci. Rev. 39:43-7.
Hannun, Y. A., and L. M. Obeid. 2002. The Ceramide-centric Universe of Lipid-mediated Cell Regulation: Stress Encounters of the Lipid Kind. J. Biol. Chem. 277: 25847-25850.
Hannun, Y. A., and L. M. Obeid. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9: 139-150.
Keren, A., Y. Tamir, and E. Bengal. 2006. The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Mol.Cell. Endocrinol. 252: 224-230.
Kontny, E., M. ZiOŁKowska, A. Ryżewska, and W. Maśliński. 1999. Protein kinase c- dependent pathway is critical for the production of pro-inflammatory cytokines. (TNF-α, IL-1β, IL-6). Cytokine 11: 839-848.
Koybasi, S., C. E. Senkal, K. Sundararaj, S. Spassieva, J. Bielawski, W. Osta, T. A. Day, J. C. Jiang, S. M. Jazwinski, and Y.A. Hannun. 2004. Defects in Cell Growth Regulation by C18:0-Ceramide and Longevity Assurance Gene 1 in Human Head and Neck Squamous Cell Carcinomas. J. Biol. Chem. 279: 44311-44319.
Lahiri, S., and A. H. Futerman. 2007. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol. Life Sci. 64: 2270-2284.
Lassar, A. B., M. J. Thayer, R. W. Overell, and H. Weintraub. 1989. Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell 58: 659-667.
Laviad, E. L., L. Albee, I. Pankova-Kholmyansky, S. Epstein, H. Park, A. H. Merrill, and A. H. Futerman. 2008. Characterization of Ceramide Synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283: 5677-5684.
Le Grand, F., A. E. Jones, V. Seale, A. Scime, and M. A. Rudnicki. 2009. Wnt7a Activates the Planar Cell Polarity Pathway to Drive the Symmetric Expansion of Satellite Stem Cells. Cell Stem Cell 4: 535-547.
Lemmer, E. R., P. de la Motte Hall, N. Omori, M. Omori, E. G. Shephard, W. C. A .Gelderblom, J. P. Cruse, R. A. Barnard, W. F. O.Marasas, R. E. Kirsch, and S. S. Thorgeirsson. 1999. Histopathology and gene expression changes in rat liver during feeding of fumonisin B1, a carcinogenic mycotoxin produced by Fusarium moniliforme. Carcinogenesis 20: 817-824.
Lluis, F., E. Perdiguero, A. R. Nebreda, and , P. Munoz-Canoves .2006. Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol. 16: 36-44.
Li, Z., T. K. Hailemariam, H. Zhou, Y. Li, D. C. Duckworth, D. A. Peake, Y. Zhang, M. S. Kuo, G. Cao, and X. C. Jiang. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim. Biophys. Acta 1771:1186-1194
Maceyka, M., S. Milstien and S. Spiegel. 2005. Sphingosine kinases, sphingosine-1-phosphate and sphingolipidomics. Prostaglandins Other Lipid Mediat. 77: 15-22.
Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9: 493-495.
McCroskery, S., M. Thomas, L. Maxwell, M. Sharma, and R. Kambadur. 2003. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell Biol. 162: 1135-1147.
Mebarek, S., H. Komati, F. Naro, C. Zeiller, M. Alvisi, M. Lagarde, A.-F. Prigent, and G. Nemoz. 2007. Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation. J. Cell Sci. 120: 407-416.
Meisen, I., M. Mormann, and J. Muthing. 2011. Thin-layer chromatography, overlay technique and mass spectrometry: A versatile triad advancing glycosphingolipidomics. Biochim. Biophys. Acta 1811: 875-896.
Merrill Jr, A. H., D. C. Liotta, and R. T. Riley. 1996. Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 6: 218-223.
Meyer, S. G. E., and H. de Groot. 2003. Cycloserine and threo-dihydrosphingosine inhibit TNF-α-induced cytotoxicity: evidence for the importance of de novo ceramide synthesis in TNF-α signaling. Biochim. Biophys. Acta 1643: 1-4.
Michel, V., and M. Bakovic. 2007. Lipid rafts in health and disease. Biol. Cell 99: 129-140.
Min, J., A. Mesika, M. Sivaguru, P. P. Van Veldhoven, H. Alexander, A. H. Futerman, and S. Alexander. 2007. (Dihydro)ceramide Synthase 1–Regulated Sensitivity to Cisplatin Is Associated with the Activation of p38 Mitogen-Activated Protein Kinase and Is Abrogated by Sphingosine Kinase 1. Mol. Cancer Res. 5: 801-812.
Mizutani, Y., A. Kihara, and Y. Igarashi. 2006. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem. J. 398: 531-538.
Mukai, A., T. Kurisaki, S. B. Sato, T. Kobayashi, G. Kondoh, and N. Hashimoto. 2009. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp. Cell Res. 315: 3052-3063.
Mullen, T. D., R. W. Jenkins, C. J. Clarke, J. Bielawski, Y. A. Hannun, and L. M. Obeid. 2011. Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J. Biol. Chem. 286: 15929-15942.
Nagata, Y., H. Kobayashi, M. Umeda, N. Ohta, S. Kawashima, P. S. Zammit, and R. Matsuda. 2006. Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J. Histochem. Cytochem. 54: 375-384.
Nincheri, P., C. Bernacchioni, F. Cencetti, C. Donati, and P. Bruni .2010. Sphingosine kinase-1/S1P1 signalling axis negatively regulates mitogenic response elicited by PDGF in mouse myoblasts. Cell. Signal. 22: 1688-1699.
O’Shea, J. M, and N. D. Perkins. 2008. Regulation of the RelA (p65) transactivation domain. Biochem. Soc. Trans. 36:603-8.
Petrache, I., V. L. Nataeajan, T. R. Zhen, A. T. Medler, C. Richter., W. C. Chung, E. V. Hubbard, and R. M. Tuder. 2005. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat. Med. 11:491-498.
Pellettieri, J., and A. S. Alvarado. 2007. Cell turnover and adult tissue homeostasis: From humans to planarians. Annu. Rev. Genet. 41: 83-105.
Perry, D. K., J. Carton, A. K. Shah, F. Meredith, D. J. Uhlinger, and Y. A. Hannun. 2000. Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J. Biol. Chem. 275: 9078-9084.
Perdiguero, E., V. Ruiz-Bonilla, L. Gresh, L. Hui, E. Ballestar, P. Sousa-Victor, B. Baeza-Raja, M. Jardi, A. Bosch-Comas, M. Esteller, C. Caelles, A. L. Serrano, E. F. Wagner, and P. Munoz-Canoves. 2007. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38 alpha in abrogating myoblast proliferation. EMBO J. 26:1245-1256.
Pewzner-Jung, Y., S. Ben-Dor, and A. H. Futerman. 2006. When do lasses (Longevity assurance genes) become CerS (Ceramide Synthases)?: insights into the regulation of ceramide synthesis. J. Biol. Chem. 281: 25001-25005.
Pinelli, E., N. Poux, L. Garren, B. Pipy, M. Castegnaro, D. J. Miller, and A. Pfohl-Leszkowicz. 1999. Activation of mitogen-activated protein kinase by fumonisin B1 stimulates cPLA2 phosphorylation, the arachidonic acid cascade and cAMP production. Carcinogenesis 20: 1683-1688.
Pizon, V., A. Iakovenko, P. F. van der Ven, M., Kelly, Fatu, C. Furst, E. Karsenti, and M.Gautel. 2002. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J. Cell Sci. 115: 4469-4482.
Porter, G. A., Jr., R. F. Makuck, and S. A. Rivkees. 2002. Reduction in intracellular calcium levels inhibits myoblast differentiation. J. Biol. Chem. 277:28942-28947.
Ramljak, D., R. J. Calvert, P. W. Wiesenfeld, B. A. Diwan, B. Catipovic, W. F. O. Marasas, T. C. Victor, , L. M. Anderson and , W. C. A . Gelderblom. 2000. A potential mechanism for fumonisin B1-mediated hepatocarcinogenesis: cyclin D1 stabilization associated with activation of Akt and inhibition of GSK-3β activity. Carcinogenesis 21: 1537-1546.
Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H., and Futerman, A. H. 2003. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278: 43452-43459.
Sassa, T., S. Suto, Y. Okayasu, and A. Kihara. 2012. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta 1821: 1031-1037.
Scadden, D. T. 2006. The stem-cell niche as an entity of action. Nature 441:1075-9.
Schmalbruch, H., and D. M. Lewis. 2000. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve 23: 617-626.
Schultz, E., M. C. Gibson, and T. Champion. 1978. Satellite cells are mitotically quiescent in mature mouse muscle: An EM and radioautographic study. J. Exp. Zool. 206: 451-456.
Schenck, M., and J.P. Nicolay. 2007. Liver cell death and anemia in Wilson disease involce acid sphingomyelinase and ceramide. Nat. Med. 13:164-170.
Seitz, C. S., Q. Lin, H. Deng, and P. A. Khavari. 1998. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl. Acad. Sci. U. S. A. 95:2307-2312.
Serra, C., D. Palacios, C.Mozzetta, S. V. Forcales, I. Morantte, M. Ripani, D. R. Jones, K. Du, U. S. Jhala, C. Simone, and P. L. Puri. 2007. Functional Interdependence at the Chromatin Level between the MKK6/p38 and IGF1/PI3K/AKT Pathways during Muscle Differentiation. Mol. Cell 28: 200-213.
Sharma, N., Q. He, and R. P. Sharma. 2004. Sphingosine kinase activity confers resistance to apoptosis by fumonisin B1 in human embryonic kidney (HEK-293) cells. Chem. Biol. Interact. 151: 33-42.
Shi, X., and D. J. Garry, 2006. Muscle stem cells in development, regeneration, and disease. Genes Dev. 20: 1692-1708.
Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31-39.
Smith, E. L., and E. H. Schuchman. 2008. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J. 22: 3419-3431.
Sohn, H., Y.-S . Kim, H.-T. Kim, C.-H. Kim, E.-W. Cho, H.-Y. Kang, N.-S. Kim, C.-H. Kim, S. E. Ryu, J.-H. Lee, and J. H. Ko. 2006. Ganglioside GM3 is involved in neuronal cell death. FASEB J. 20:1248-1250.
Spiegel, S., and A. H. Merrill. 1996. Sphingolipid metabolism and cell growth regulation. FASEB J. l 10: 1388-1397.
Spiegel, S., and S. Milstien. 2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4:397-407.
Stiban, J., R. Tidhar, and A. H. Futerman. 2010. Ceramide synthases: roles in cell physiology and signaling. Adv. Exp. Med. Biol. 688: 60-71.
Suelves, M., F. Lluis, V. Ruiz, A. R. Nebreda, and P. Munoz-Canoves. 2004. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J. 23:365-375.
Summers, S. A. 2006. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 45: 42-72.
Tajbakhsh, S. 2009. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266: 372-389.
Tolleson, W. H., W. B. Melchior, S. M. Morris, L. J. McGarrity, O. E. Domon, L .Muskhelishvili, S. J. James, and P. C. Howard. 1996. Apoptotic and anti-proliferative effects of fumonisin B1 in human keratinocytes, fibroblasts, esophageal epithelial cells and hepatoma cells. Carcinogenesis 17: 239-249.
Turnbull KJ, Brown BL, Dobson PR. 1999. Caspase‑3‑like activity is necessary but not sufficient for daunorubicin‑induced apoptosis in Jurkat human lymphoblastic leukemia cells. Leukemia 13:1056-1061.
Uemura, S. 2012. The Regulation of Ganglioside GM3 Synthesis. Yakuqaku Zasshi 132: 895-901.
Vaidya, T. B., S. J. Rhodes, E. J . Taparowsky, and S. F . Konieczny. 1989. Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoD1. Mol. Cell Biol. 9: 3576-3579.
van den Eijnde, S. M., M. J. B. van den Hoff, C. P. M. Reutelingsperger, W. L. van Heerde, M. E. R. Henfling, C. Vermeij-Keers, B. Schutte, M. Borgers, and F. C. S. Ramaekers. 2001. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 114:
van Meer, G., and Q. Lisman. 2002. Sphingolipid transport: rafts and translocators. J. Biol. Chem. 277:25855-25858.
van Blitterswijk, W. J., A. G. van der Luit., R. J. Veldman., M. Verhrij, and J. Borst. 2003. Ceramide: second messenger or modulator of membrane structure and dynamics? J. Biol. Chem. 369: 199-211.
van Meer, G., D. R. Voelker, and G. W. Feigenson. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112-124.
Venkataraman, K., C. Riebeling, J. Bodennec, H. Riezman, J. C . Allegood, M. C. Sullards, A. H. Merrill, and A. H. Futerman. 2002. Upstream of Growth and Differentiation Factor 1 (uog1), a Mammalian Homolog of the Yeast Longevity Assurance Gene 1 (LAG1), RegulatesN-Stearoyl-sphinganine (C18-(Dihydro)ceramide) Synthesis in a Fumonisin B1-independent Manner in Mammalian Cells. J. Biol. Chem. 277: 35642-35649.
Veluthakal, R., G. R. Jangati, and A. Kowluru. 2006. IL-1beta-induced iNOS expression, NO release and loss in metabolic cell viability are resistance to inhibitors of ceramide synthase and sphingomyelinase in INS 823/13 cells. J. Pancreas 7:593-601.
Volonte, D., A. J. Peoples, and F. Galbiati. 2003. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C. Mol. Cell Biol. 14:4075-4088.
Wang, G., J. Silva, S. Dasgupta, and E. Bieberich. 2008. Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56: 449-456.
Wilson-Rawls, J., J. D. Molkentin, B. L. Black, and E. N. Olson. 1999. Activated Notch Inhibits Myogenic Activity of the MADS-Box Transcription Factor Myocyte Enhancer Factor 2C. Mol. Cell Biol. 19: 2853-2862.
Wickstead, B., and K. Gull. 2011. The evolution of the cytoskeleton. J. Cell Biol. 194: 513-525.
Xu, Z. W., J. M. Zhou, D. M. McCoy, and R. K. Mallampalli. 2005. LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J. Lipid Res. 46: 1229-1238.
Yang, Z., M. Costanzo, D.W. Golde, R.N. Kolesnick. 1993. Turmo necrosis factor activation of the sphingomyelin pathway signals nuclear factor jappa B translocation in intact HL-60 cells. J. Biol. Chem. 268:20520-3
Yoo, H. S., W. P. Norred, and R. T. Riley. 1996. A rapid method for quantifying free sphingoid bases and complex sphingolipids in microgram amounts of cells following exposure to fumonisin B1. Toxicol in Vitro 10: 77-84.
Yu, H., M. Valerio, and J. Bielawski. 2012. Fenretinide inhibited de novo ceramide synthesis and pro-inflammatory cytokines induced by A. actinomycetemcomitans. J. Lipid Res. 54:189-201.
Zammit, P. S., T. A. Partridge , and Z. Yablonka-Reuveni. 2006. The skeletal muscle satellite cell: The stem cell that came in from the cold. J. Histochem. Cytochem. 54:1177-1191.
Zammit, P. S. 2008. All muscle satellite cells are equal, but are some more equal than others? J. Cell Sci. 121:2975-2982.
Zeidan, Y. H., and Y. A. Hannun. 2007. Activation of acid sphingomyelinase by protein kinase Cδ-mediated phosphorylation. J. Biol. Chem. 282: 11549-11561.
Zhang, Y., M. B. Dickman, and C. Jones. 1999. The mycotoxin fumonisin B1 transcriptionally activates the p21 promoter through acis-acting element containing two sp1 binding sites. J. Biol. Chem. 274: 12367-12371.
Zitomer, N. C., T. Mitchell, K. A.Voss, G. S. Bondy, S. T. Pruett, E. C.Garnier-Amblard, L. S.Liebeskind, H. Park, E. Wang, M. C. Sullards.2009. Ceramide Synthase Inhibition by Fumonisin B1 Causes Accumulation of 1-Deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian celllines and animals J . Biol. Chem. 284: 4786-4795.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊