跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.134
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐鈺婷
研究生(外文):HSU, YU-TING
論文名稱:非藍綠菌主導之暮光區礁體微生物岩及其環境意義
論文名稱(外文):Unconventional Architects in the Twilight: Non-Cyanobacterial Reefal Microbial Crusts Microbes and Their Environmental Significance.
指導教授:張英如宮守業
指導教授(外文):CHANG, YING-JUGONG, SHOU-YEH
口試委員:湯森林林立虹王士偉
口試委員(外文):TANG, SEN-LINLIN, LI-HUNGWANG, SHI-WEI
口試日期:2023-07-25
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:50
中文關鍵詞:礁體微生物岩全新世生物礦化作用紫色非硫光合菌古環境
外文關鍵詞:Reefal microbial crustsHoloceneBiomineralizationPurple non-sulfur bacteriaPaleoenvironment.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微生物岩(microbialite)是由底棲性微生物群落進行生理活動時將碎屑沉積物凝聚礦化,產生的生物性沉積岩。新生代礁體微生物岩(reefal microbial crusts, RMCs)相對罕見,是近二十年才被發現存在於珊瑚礁生態系統之微生物岩,珊瑚礁生存於含氧、寡營養之清澈海水,而微生物岩則需在較混濁且具營養鹽來源的條件得以大量生長,亦即珊瑚礁及微生物岩代表著迥異之環境條件。過去研究認為硫酸還原細菌(sulfate-reducing bacteria, SRB)主導礦化作用進行,但仍無法完善解釋礁體微生物岩的形成機制與不均勻空間分布。有鑑於此,本研究結合分子生物學和地質學建立菲律賓Maydonlong全新世珊瑚礁、微生物岩及沉積物之微生物群落和產狀,以全新的切入點釐清新生代礁體微生物岩形成機制與環境條件。研究結果顯示,Maydonlong岩芯產狀為珊瑚礁包裹著細顆粒、無骨架堆疊的凝結狀球粒(peloids),具有固定的產狀排列方式,最內層為薄層層狀微生物岩;第二層為主體之柱狀微生物岩;最外層為薄層樹突狀微生物岩。生物礦化作用(Microbial precipitation)為礁體微生物岩主要沉積因素,珊瑚礁存在、種類或接觸與否不影響其發育。微生物群落由Proteobacteria、Actinobacteriota和Firmicutes組成。生物礦化作用以Alphaproteobacteria等紫色非硫光合菌(purple non-sulfur bacteria)異營光合作用菌為主,降解尿素及硝酸鹽還原作用菌為輔,並且礁體微生物岩含有更高豐度及多樣性的Gammaproteobacteria與Bacilli。礁體微生物岩形成之微環境指示為不直接受光照的洞穴,其可能生成於珊瑚死亡後,珊瑚礁持續堆疊於富含有機質並有水體流入的低氧低光照的暮光帶(twilight zone),光通量應在7.8 µmol photon·m−2 s−1附近,溶解氧量則介於3-25 µM,珊瑚與礁體微生物岩可同時發育於不同空間之珊瑚礁生態系統。值得一提的是過去普遍認為Cyanobacteria是微生物岩主導者,在本研究中其含量極少且沒有發揮主導的角色。本研究以跨領域的研究方式提出一個全新的觀點,認為新生代礁體微生物岩為新型非藍綠菌主導之微生物岩,乃是由紫色非硫光合細菌主導生物礦化並建造微生物岩,珊瑚和微生物岩存在於暮光區之珊瑚礁生態系統,為環境判讀提供新穎的解答。
Microbiallites are biogenic sedimentary rocks formed by bacteria and archaea which through the physiochemical activities and biomineralization. It is recognized that Cyanobacteria are the most important dominator forming many types of microbialites from Cambrian to present. Reefal microbial crusts (RMCs) are a new occurrence of thrombolites, coating coralgal reef frameworks in late Quaternary reef deposits. Its unique characteristic and random distribution puzzle the researchers still. This study aims to investigate the environmental significance of Holocene RMCs in Maydonlong, Philippines. From the occurrence, it is speculated that RMCs were not formed with living corals at the same time. The study infer the paleoenvironment conditions during the development of RMCs by establishing bacterial community data of corals, microbialites and sediments. The Maydonlong RMCs exhibits a depositional pattern consisting mainly of peloids, which are fine-grained, non-skeletal thrombolite. Based on the sedimentary conditions, it is determined that the RMCs in Maydonlong are mainly formed by microbial precipitation. The presence, species, or contact of corals do not affect the development of RMCs. RMCs shows a specific occurrence. The innermost layer consists of thin-layered stromatolite, followed by thrombolite as the mainly composition and thin-layered dendrolite on the outer surface. The microbial community of RMCs is composed by Proteobacteria, Actinobacteriota and Firmicutes. Biomineralization is primarily affected by purple non-sulfur bacteria, such as Alphaproteobacteria, which through heterotrophic photosynthesis. Urea degradation and nitrate reduction bacteria play a supportive role. RMCs exhibit higher abundance and diversity of Gammaproteobacteria and Bacilli. However, Cyanobacteria, considered the dominantor of microbialite builders commonly, are relatively negligible. The microenvironment of RMCs suggests cave-like conditions with low light exposure and organic-rich substrates, limited oxygen supply through inflow. Corals and RMCs can coexist in different spatial positions within coral reef ecosystems. RMCs may develop in the twilight zone, characterized by low oxygen and low light conditions with coral reef continuous stacking. The light flux is estimated to be around 7.8 µmol photon·m−2 · s−1, and dissolved oxygen range from 3 to 25 µM under low-oxygen conditions. This study presents a novel perspective that Holocene RMCs are mainly formed by purple non-sulfur bacteria and other none-Cyanobacteria community. This proposes a new environmental indicator for interpreting microbialite formation.
一、緒論
二、前人研究
三、研究方法
(一)研究樣本
(二)研究儀器
(三)研究步驟
1. 薄片觀察及岩芯繪製
2. 樣本前處理
3. 核酸萃取(Extraction of DNA)
4. 核酸擴增及純化(PCR and Purification of DNA)
5. 添加DNA條形碼(DNA barcode)
6. 次世代定序(Next Generation Sequencing)基因庫分析與數據處理
四、研究結果
(一)岩芯序列
(二)岩石薄片岩相分析
(三)微生物群落分析結果
(四)藻類存在調查
五、討論
(一)沉積物及藻類對照結果
(二)岩芯柱及岩相意義
(三)微生物主導之生物礦化作用
(四)微生物組成代表意義
(五)RMCs生長位置、年代及古環境
六、結論
七、參考文獻

Achal, V., Pan, X., & Zhang, D. (2012). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89(6), 764-768.
Aitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163-1178.
Allen, M. A., Goh, F., Burns, B. P., & Neilan, B. A. (2009). Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1), 82-96. 
Appah, J. K. M., Dillane, E., Lim, A., O’Riordan, R., O’Reilly, L., Macedo, L., & Wheeler, A. J. (2021). Cold-water Coral Microbiome and Environmental Microbial Communities in a Remote NE Atlantic Submarine Canyon Setting: Microbial Diversity, Coral Health and Prospects.
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., & Rougerie, F. (1996). Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382(6588), 241-244.
Baskar, S., Routh, J., Baskar, R., Kumar, A., Miettinen, H., & Itävaara, M. (2016). Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiology Journal, 33(10), 906-933.
Baumgartner, L. K., Spear, J. R., Buckley, D. H., Pace, N. R., Reid, R. P., Dupraz, C., & Visscher, P. T. (2009). Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environmental Microbiology, 11(10), 2710-2719.
Belmok, A., de Almeida, F. M., Rocha, R. T., Vizzotto, C. S., Tótola, M. R., Ramada, M. H. S., Krüger, R. H., Kyaw, C. M., & Pappas Jr, G. J. (2023). Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid. Brazilian Journal of Microbiology, 54(1), 239-258.
Beveridge, T. J., & Murray, R. G. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of bacteriology, 141(2), 876-887.
Bosak, T., Greene, S. E., & Newman, D. K. (2007). A likely role for anoxygenic
photosynthetic microbes in the formation of ancient stromatolites. Geobiology, 5(2), 119-126.
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4), 401-411.
Brocks, J. J., Logan, G. A., Buick, R., & Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. science, 285(5430), 1033-1036.
Burne, R. V., & Moore, L. (1987). Microbialites; organosedimentary deposits of
benthic microbial communities. Palaios, 2, 241-254.
Burne, R. A., & Chen, Y. Y. (2000). Bacterial ureases in infectious diseases. Microbes Infect. 2: 533-542.
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., & Holmes S. P. (2016). DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat. Methods 13 (7), 581–583. doi: 10.1038/nmeth.3869.
Camoin, G. F., Gautret, P., Montaggioni, L. F., & Cabioch, G. (1999). Nature and
environmental significance of microbialites in Quaternary reefs: the Tahiti paradox. Sedimentary Geology, 126(1-4), 271-304.
Camoin, G., Cabioch, G., Eisenhauer, A., Braga, J. C., Hamelin, B., & Lericolais, G. (2006). Environmental significance of microbialites in reef environments during the last deglaciation. Sedimentary Geology, 185(3-4), 277-295.
Cabioch, G., Camoin, G., Webb, G., Le Cornec, F., Molina, M.G., Pierre, C., & Joachimski,M., (2006). Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu(South-West Pacific). Sediment. Geol. 185, 297-318.
Choi, J., & Park, J. S. (2020). Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Scientific reports, 10(1), 1-11.
Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M. T., & Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
Dromart, G., Gaillard, C., & Jansa, L. F. (1994). Deep-marine microbial structures in the Upper Jurassic of western Tethys. In Bertrand-Sarfati, J., and Monty, C.(eds), Phanerozoic Stromatolites II. Dordrecht:Kluwer, pp. 295–318.
Dupraz, C., & Strasser, A. (1999). Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains). Facies, 4, 101–129.
Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in microbiology, 13(9), 429-438.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141-162.
FUJITA, K., SASAKI, T., KOYANO, S., CHINEN, M., HONGO, C., WEBSTER, J. M., &
IRYU, Y. (2020). Reefal microbial crusts found in Middle Holocene reef from Okinawa Island, the Ryukyu Archipelago. Galaxea, Journal of Coral Reef Studies, 22(1), 9-25
Gallego, V., Sanchez-Porro, C., García, M. T., & Ventosa, A. (2006). Massilia aurea sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, 56(10), 2449-2453.
Gao, D. W., Fu, Y., Tao, Y., Li, X. X., Xing, M., Gao, X. H., & Ren, N. Q. (2011). Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations. Bioresource technology, 102(10), 5626-5633.
Garrity, G. M., Bell, J. A., & Lilburn, T. (2005). Class I. Alphaproteobacteria class. nov. In Bergey’s manual® of systematic bacteriology (pp. 1-574). Springer, Boston, MA.
Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., & Bertrand, J. C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 42(4), 568-576.
Gérard, E., De Goeyse, S., Hugoni, M., Agogué, H., Richard, L., Milesi, V., Guyot, F., Lecourt, L., Borensztajn, S., Joseph, M., Leclerc, T., Sarazin, G., Jézéquel, D., Leboulanger, C. & Ader, M. (2018). Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Frontiers in Microbiology, 9, 796.
Glazer, B. T., Luther, G. W., III, Konovalov, S. K., Friederich, G. E., Nuzzio, D. B., Trouwborst, R. E., Tebo, B. M., Clement, B., Murray, K., & Romanov, A. S. (2006). Documenting the suboxic zone of the Black Sea via high-resolution real-time profiling. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 1740– 1755.
Goepel, K. D. (2013). Implementing the analytic hierarchy process as a standard
method for multi-criteria decision making in corporate enterprises–a new AHP excel template with multiple inputs. In Proceedings of the international symposium on the analytic hierarchy process (Vol. 2, No. 10, pp. 1-10). Kuala Lumpur, Malaysia: Creative Decisions Foundation Kuala Lumpur.
Graeber, I., Kaesler, I., Borchert, M. S., Dieckmann, R., Pape, T., Lurz, R., Nielsen, P.,Döhren, H. V., Michaelis, W., & Szewzyk, U. (2008). Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. International journal of systematic and evolutionary microbiology, 58(3), 585-590.
Gong, S. Y., Siringan, F. P., Lin, K., & Shen, C.C. (2013). An abrupt backreef infilling of a Holocene reef, Paraoir, Northwestern Luzon, Philippines. Coral Reefs 32,293-303.
Gong, S. Y., Li, H. C., Siringan, F. P., Zhao, M., Kang, S. C., & Chou, C. Y. (2017). AMS Carbon-14 dating of microbial carbonates in Holocene coral reefs, Western Luzon, Philippines. Quaternary International, 447, 27-34.
Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates:
evolutionary mileposts or environmental dipsticks?. Annual review of earth and planetary sciences, 27(1), 313-358.
Grotzinger, J. P., & James, N. P. (2000). Precambrian carbonates: evolution of
understanding. In Grotzinger, J. P., and James, N. P.(eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Tulsa, OK: Society of Economic Haas, A. F., Fairoz, M. F., Kelly, L. W., Nelson, C. E., Dinsdale, E. A., Edwards, R. A., Giles,
S., Hatay, M., Hisakawa, N., Knowles, B., Lim, Y. W., Maughan, H., Pantos, O., Roach, T. N. F., Sanchez, S. E., Silveira, C. B., Sandin, S., Smith, J. E., & Rohwer, F. (2016). Global microbialization of coral reefs. Nature microbiology, 1(6), 1-7.
Haas, A. F., Nelson, C. E., Rohwer, F., Wegley-Kelly, L., Quistad, S. D., Carlson, C. A., Leichter, J. J., Hatay, M., & Smith, J. E. (2013). Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ, 1, e108.
Heindel, K. (2008). Environmental control of the genesis of Tahitian reef microbialites during the last deglacial sea level rise. Doctoral dissertation, Bremen, Univ., Diss.
Heindel, K., Birgel, D., Peckmann, J., Kuhnert, H., & Westphal, H. (2010). Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria. Palaios, 25(10), 618-635.
Hoffmann, T. D., Reeksting, B. J., & Gebhard, S. (2021). Bacteria-induced mineral precipitation: a mechanistic review. Microbiology, 167(4).
James, N. P., & Gravestock, D. I. (1990). Lower Cambrian shelf and shelf margin
build-ups, Flinders Ranges, South Australia. Sedimentology, 37, 455–480.
Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101, 6551-6561.
Krause, S., Liebetrau, V., Löscher, C. R., Böhm, F., Gorb, S., Eisenhauer, A., & Treude, T. (2018). Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochimica et Cosmochimica Acta, 243, 116-132.
Lee K. C., & Rittmann B. E. (2003). Effects of pH and precipitation on
autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res 37: 1551-1556.
Lee, S. T., Davy, S. K., Tang, S. L., Fan, T. Y., & Kench, P. S. (2015). Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS microbiology ecology, 91(12),142.
Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., & Luterbacher, H. (1994). The origin of Jurassic reefs: current research developments and results. Facies, 31, 1–56.
Licht, M. K., Nuss, A. M., Volk, M., Konzer, A., Beckstette, M., Berghoff, B. A., & Klug, G. (2020). Adaptation to photooxidative stress: Common and special strategies of the alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms, 8(2), 283.
Long, G., Zhu, P., Shen, Y., & Tong, M. (2009). Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria. Environmental science & technology, 43(7), 2308-2314.
López-García, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot, F., & Moreira, D. (2005). Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles, 9(4), 263-274.
Luis-Vargas, M. N., López-Martínez, R. A., Vilchis-Nestor, A. R., Daza, R., & Alcántara-Hernández, R. J. (2019). Bacterial insights into the formation of opaline stromatolites from the Chimalacatepec lava tube system, Mexico. Geomicrobiology Journal, 36(8), 694-704.
L'Haridon, S., Miroshnichenko, M. L., Kostrikina, N. A., Tindall, B. J., Spring, S., Schumann, P., Stackebrandt E., Bonch-Osmolovskaya, E. A., & Jeanthon, C. (2006). Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. International journal of systematic and evolutionary microbiology, 56(5), 1047-1053.
Madigan, M. T., Martinko, J. M., & Parker, J. (1997). Brock biology of microorganisms(Vol. 11). Upper Saddle River, NJ: Prentice hall.
Moore, L. S., & Burne, R. V. (1994). The modern thrombolites of Lake Clifton, western Australia. In Bertrand Sarfati, J., and Monty, C. L. (eds.), Phanerozoic Stromatolites II. Dordrecht: Kluwer Academic Publishers, pp. 3–29.
Murray, J. W., Codispoti, L. A., & Friederich, G. E. (1995). Oxidation-reduction
environments: The suboxic zone in the Black Sea. In C. P. Huang, C. R. O’Melia, & J. J. Morgan (Eds.), Aquatic chemistry: Interfacial and interspecies processes, ACS Advances in Chemistry Series (Vol. 224, pp. 157– 176). Washington DC: American Chemical Society.
Montaggioni, L. F., & Camoin, G. F. (1993). Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology, 21, 149–152.
Olivier, N., Lathuilière, B., & Thiry-Bastien, P. (2006). Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental considerations. Facies, 52, 113–127.
Reeksting, B. J., Hoffmann, T. D., Tan, L., Paine, K., & Gebhard, S. (2020). In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Applied and Environmental Microbiology, 86(7), e02739-19.
Riding, R. (2011). Microbialites, stromatolites, and thrombolites. In Encyclopedia of geobiology.
Riding, R., & Liang, L. (2005). Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 101–115.
Riding, R., Liang, L., & Braga, J.C. (2014). Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs. Geobiology 12, 387–405.
Rusch, A., Hannides, A. K., & Gaidos, E. (2009). Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments. Coral Reefs, 28, 15-26.
Schopf, J. W. (2006). Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 869-885.
Schneider, D., Arp, G., Reimer, A., Reitner, J., & Daniel, R. (2013). Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PloS one, 8(6), e66662.
St. Clair, S., Saraylou, M., Melendez, D., Senn, N., Reitz, S., Kananipour, D., & Alvarez, A. (2020). Analysis of the soil microbiome of a Los Angeles urban farm. Applied and Environmental Soil Science, 2020, 1-16.
Staley, J. T., & Brenner, D. J. (2015). Enhydrobacter. Bergey's Manual of Systematics of Archaea and Bacteria, 1-3.
Subramanian, S. B., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2010). Extracellular
polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water research, 44(7), 2253-2266.
Sun, B., Zhao, H., Zhao, Y., Tucker, M. E., Han, Z., & Yan, H. (2020). Bio-precipitation of carbonate and phosphate minerals induced by the bacterium Citrobacter freundii ZW123 in an anaerobic environment. Minerals, 10(1), 65.
Thurber, R. V., Willner‐Hall, D., Rodriguez‐Mueller, B., Desnues, C., Edwards, R. A., Angly, F., Dinsdale, E., Kelly, L., & Rohwer, F. (2009). Metagenomic analysis of stressed coral holobionts. Environmental microbiology, 11(8), 2148-2163.
Visscher, P. T., Reid, R. P., Bebout, B. M., Hoeft, S. E., Macintyre, I. G., & Thompson, J. A. (1998). Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling. American Mineralogist, 83(11-12_Part_2), 1482-1493.
Webster, N. S., Smith, L. D., Heyward, A. J., Watts, J. E., Webb, R. I., Blackall, L. L., & Negri, A. P. (2004). Metamorphosis of a scleractinian coral in response to microbial biofilms. Applied and Environmental Microbiology, 70(2), 1213-1221.
White III, R. A., Chan, A. M., Gavelis, G. S., Leander, B. S., Brady, A. L., Slater, G. F., Lim, D. S. S., & Suttle, C. A. (2016). Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community. Frontiers in microbiology, 6, 1531.
White, R. A. (2020). The Global Distribution of Modern Microbialites: Not So Uncommon After All. Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth, 107-134.
Yang, S. H., Lee, S. T., Huang, C. R., Tseng, C. H., Chiang, P. W., Chen, C. P., Chen, H. J., & Tang, S. L. (2016). Prevalence of potential nitrogen‐fixing, green sulfur bacteria in the skeleton of reef‐building coral Isopora palifera. Limnology and oceanography, 61(3), 1078-1086.
Yanez-Montalvo, A., Águila, B., Gómez-Acata, S., Mass-Vargas, M., Cabanillas-Terán, N., Vega-Zepeda, A., Bahena, H., Hernández-Arana, H., & Falcón, L. I. (2021). Depth related structure and microbial composition of microbialites in a karst sinkhole, Cenote Azul, Mexico. Geomicrobiology Journal, 38(3), 237-251.
Zavarzin, G. A. (2002). Microbial geochemical calcium cycle. Microbiology (00262617), 71(1).
Zhuang, L., Liu, Y., Wang, L., Wang, W., & Shao, Z. (2015) Erythrobacter atlanticus sp. nov., a bacteriumfrom ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 65:3714–3719.
電子全文 電子全文(網際網路公開日期:20270801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊