|
Achal, V., Pan, X., & Zhang, D. (2012). Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp. Chemosphere, 89(6), 764-768. Aitken, J. D. (1967). Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37, 1163-1178. Allen, M. A., Goh, F., Burns, B. P., & Neilan, B. A. (2009). Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology, 7(1), 82-96. Appah, J. K. M., Dillane, E., Lim, A., O’Riordan, R., O’Reilly, L., Macedo, L., & Wheeler, A. J. (2021). Cold-water Coral Microbiome and Environmental Microbial Communities in a Remote NE Atlantic Submarine Canyon Setting: Microbial Diversity, Coral Health and Prospects. Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., & Rougerie, F. (1996). Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382(6588), 241-244. Baskar, S., Routh, J., Baskar, R., Kumar, A., Miettinen, H., & Itävaara, M. (2016). Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrobiology Journal, 33(10), 906-933. Baumgartner, L. K., Spear, J. R., Buckley, D. H., Pace, N. R., Reid, R. P., Dupraz, C., & Visscher, P. T. (2009). Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environmental Microbiology, 11(10), 2710-2719. Belmok, A., de Almeida, F. M., Rocha, R. T., Vizzotto, C. S., Tótola, M. R., Ramada, M. H. S., Krüger, R. H., Kyaw, C. M., & Pappas Jr, G. J. (2023). Genomic and physiological characterization of Novosphingobium terrae sp. nov., an alphaproteobacterium isolated from Cerrado soil containing a mega-sized chromid. Brazilian Journal of Microbiology, 54(1), 239-258. Beveridge, T. J., & Murray, R. G. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of bacteriology, 141(2), 876-887. Bosak, T., Greene, S. E., & Newman, D. K. (2007). A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology, 5(2), 119-126. Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4), 401-411. Brocks, J. J., Logan, G. A., Buick, R., & Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. science, 285(5430), 1033-1036. Burne, R. V., & Moore, L. (1987). Microbialites; organosedimentary deposits of benthic microbial communities. Palaios, 2, 241-254. Burne, R. A., & Chen, Y. Y. (2000). Bacterial ureases in infectious diseases. Microbes Infect. 2: 533-542. Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., & Holmes S. P. (2016). DADA2: High-Resolution Sample Inference From Illumina Amplicon Data. Nat. Methods 13 (7), 581–583. doi: 10.1038/nmeth.3869. Camoin, G. F., Gautret, P., Montaggioni, L. F., & Cabioch, G. (1999). Nature and environmental significance of microbialites in Quaternary reefs: the Tahiti paradox. Sedimentary Geology, 126(1-4), 271-304. Camoin, G., Cabioch, G., Eisenhauer, A., Braga, J. C., Hamelin, B., & Lericolais, G. (2006). Environmental significance of microbialites in reef environments during the last deglaciation. Sedimentary Geology, 185(3-4), 277-295. Cabioch, G., Camoin, G., Webb, G., Le Cornec, F., Molina, M.G., Pierre, C., & Joachimski,M., (2006). Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu(South-West Pacific). Sediment. Geol. 185, 297-318. Choi, J., & Park, J. S. (2020). Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Scientific reports, 10(1), 1-11. Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M. T., & Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124. Dromart, G., Gaillard, C., & Jansa, L. F. (1994). Deep-marine microbial structures in the Upper Jurassic of western Tethys. In Bertrand-Sarfati, J., and Monty, C.(eds), Phanerozoic Stromatolites II. Dordrecht:Kluwer, pp. 295–318. Dupraz, C., & Strasser, A. (1999). Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura mountains). Facies, 4, 101–129. Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in microbiology, 13(9), 429-438. Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3), 141-162. FUJITA, K., SASAKI, T., KOYANO, S., CHINEN, M., HONGO, C., WEBSTER, J. M., & IRYU, Y. (2020). Reefal microbial crusts found in Middle Holocene reef from Okinawa Island, the Ryukyu Archipelago. Galaxea, Journal of Coral Reef Studies, 22(1), 9-25 Gallego, V., Sanchez-Porro, C., García, M. T., & Ventosa, A. (2006). Massilia aurea sp. nov., isolated from drinking water. International Journal of Systematic and Evolutionary Microbiology, 56(10), 2449-2453. Gao, D. W., Fu, Y., Tao, Y., Li, X. X., Xing, M., Gao, X. H., & Ren, N. Q. (2011). Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations. Bioresource technology, 102(10), 5626-5633. Garrity, G. M., Bell, J. A., & Lilburn, T. (2005). Class I. Alphaproteobacteria class. nov. In Bergey’s manual® of systematic bacteriology (pp. 1-574). Springer, Boston, MA. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., & Bertrand, J. C. (1992). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 42(4), 568-576. Gérard, E., De Goeyse, S., Hugoni, M., Agogué, H., Richard, L., Milesi, V., Guyot, F., Lecourt, L., Borensztajn, S., Joseph, M., Leclerc, T., Sarazin, G., Jézéquel, D., Leboulanger, C. & Ader, M. (2018). Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Frontiers in Microbiology, 9, 796. Glazer, B. T., Luther, G. W., III, Konovalov, S. K., Friederich, G. E., Nuzzio, D. B., Trouwborst, R. E., Tebo, B. M., Clement, B., Murray, K., & Romanov, A. S. (2006). Documenting the suboxic zone of the Black Sea via high-resolution real-time profiling. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 1740– 1755. Goepel, K. D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises–a new AHP excel template with multiple inputs. In Proceedings of the international symposium on the analytic hierarchy process (Vol. 2, No. 10, pp. 1-10). Kuala Lumpur, Malaysia: Creative Decisions Foundation Kuala Lumpur. Graeber, I., Kaesler, I., Borchert, M. S., Dieckmann, R., Pape, T., Lurz, R., Nielsen, P.,Döhren, H. V., Michaelis, W., & Szewzyk, U. (2008). Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. International journal of systematic and evolutionary microbiology, 58(3), 585-590. Gong, S. Y., Siringan, F. P., Lin, K., & Shen, C.C. (2013). An abrupt backreef infilling of a Holocene reef, Paraoir, Northwestern Luzon, Philippines. Coral Reefs 32,293-303. Gong, S. Y., Li, H. C., Siringan, F. P., Zhao, M., Kang, S. C., & Chou, C. Y. (2017). AMS Carbon-14 dating of microbial carbonates in Holocene coral reefs, Western Luzon, Philippines. Quaternary International, 447, 27-34. Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?. Annual review of earth and planetary sciences, 27(1), 313-358. Grotzinger, J. P., & James, N. P. (2000). Precambrian carbonates: evolution of understanding. In Grotzinger, J. P., and James, N. P.(eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Tulsa, OK: Society of Economic Haas, A. F., Fairoz, M. F., Kelly, L. W., Nelson, C. E., Dinsdale, E. A., Edwards, R. A., Giles, S., Hatay, M., Hisakawa, N., Knowles, B., Lim, Y. W., Maughan, H., Pantos, O., Roach, T. N. F., Sanchez, S. E., Silveira, C. B., Sandin, S., Smith, J. E., & Rohwer, F. (2016). Global microbialization of coral reefs. Nature microbiology, 1(6), 1-7. Haas, A. F., Nelson, C. E., Rohwer, F., Wegley-Kelly, L., Quistad, S. D., Carlson, C. A., Leichter, J. J., Hatay, M., & Smith, J. E. (2013). Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ, 1, e108. Heindel, K. (2008). Environmental control of the genesis of Tahitian reef microbialites during the last deglacial sea level rise. Doctoral dissertation, Bremen, Univ., Diss. Heindel, K., Birgel, D., Peckmann, J., Kuhnert, H., & Westphal, H. (2010). Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria. Palaios, 25(10), 618-635. Hoffmann, T. D., Reeksting, B. J., & Gebhard, S. (2021). Bacteria-induced mineral precipitation: a mechanistic review. Microbiology, 167(4). James, N. P., & Gravestock, D. I. (1990). Lower Cambrian shelf and shelf margin build-ups, Flinders Ranges, South Australia. Sedimentology, 37, 455–480. Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101, 6551-6561. Krause, S., Liebetrau, V., Löscher, C. R., Böhm, F., Gorb, S., Eisenhauer, A., & Treude, T. (2018). Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation. Geochimica et Cosmochimica Acta, 243, 116-132. Lee K. C., & Rittmann B. E. (2003). Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res 37: 1551-1556. Lee, S. T., Davy, S. K., Tang, S. L., Fan, T. Y., & Kench, P. S. (2015). Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS microbiology ecology, 91(12),142. Leinfelder, R. R., Krautter, M., Laternser, R., Nose, M., Schmid, D. U., Schweigert, G., Werner, W., Keupp, H., Brugger, H., Herrmann, R., Rehfeld-Kiefer, U., Schroeder, J. H., Reinhold, C., Koch, R., Zeiss, A., Schweizer, V., Christmann, H., Menges, G., & Luterbacher, H. (1994). The origin of Jurassic reefs: current research developments and results. Facies, 31, 1–56. Licht, M. K., Nuss, A. M., Volk, M., Konzer, A., Beckstette, M., Berghoff, B. A., & Klug, G. (2020). Adaptation to photooxidative stress: Common and special strategies of the alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms, 8(2), 283. Long, G., Zhu, P., Shen, Y., & Tong, M. (2009). Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria. Environmental science & technology, 43(7), 2308-2314. López-García, P., Kazmierczak, J., Benzerara, K., Kempe, S., Guyot, F., & Moreira, D. (2005). Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles, 9(4), 263-274. Luis-Vargas, M. N., López-Martínez, R. A., Vilchis-Nestor, A. R., Daza, R., & Alcántara-Hernández, R. J. (2019). Bacterial insights into the formation of opaline stromatolites from the Chimalacatepec lava tube system, Mexico. Geomicrobiology Journal, 36(8), 694-704. L'Haridon, S., Miroshnichenko, M. L., Kostrikina, N. A., Tindall, B. J., Spring, S., Schumann, P., Stackebrandt E., Bonch-Osmolovskaya, E. A., & Jeanthon, C. (2006). Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. International journal of systematic and evolutionary microbiology, 56(5), 1047-1053. Madigan, M. T., Martinko, J. M., & Parker, J. (1997). Brock biology of microorganisms(Vol. 11). Upper Saddle River, NJ: Prentice hall. Moore, L. S., & Burne, R. V. (1994). The modern thrombolites of Lake Clifton, western Australia. In Bertrand Sarfati, J., and Monty, C. L. (eds.), Phanerozoic Stromatolites II. Dordrecht: Kluwer Academic Publishers, pp. 3–29. Murray, J. W., Codispoti, L. A., & Friederich, G. E. (1995). Oxidation-reduction environments: The suboxic zone in the Black Sea. In C. P. Huang, C. R. O’Melia, & J. J. Morgan (Eds.), Aquatic chemistry: Interfacial and interspecies processes, ACS Advances in Chemistry Series (Vol. 224, pp. 157– 176). Washington DC: American Chemical Society. Montaggioni, L. F., & Camoin, G. F. (1993). Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology, 21, 149–152. Olivier, N., Lathuilière, B., & Thiry-Bastien, P. (2006). Growth models of Bajocian coral-microbialite reefs of Chargey-lès-Port (eastern France): palaeoenvironmental considerations. Facies, 52, 113–127. Reeksting, B. J., Hoffmann, T. D., Tan, L., Paine, K., & Gebhard, S. (2020). In-depth profiling of calcite precipitation by environmental bacteria reveals fundamental mechanistic differences with relevance to application. Applied and Environmental Microbiology, 86(7), e02739-19. Riding, R. (2011). Microbialites, stromatolites, and thrombolites. In Encyclopedia of geobiology. Riding, R., & Liang, L. (2005). Geobiology of microbial carbonates: metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 101–115. Riding, R., Liang, L., & Braga, J.C. (2014). Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs. Geobiology 12, 387–405. Rusch, A., Hannides, A. K., & Gaidos, E. (2009). Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments. Coral Reefs, 28, 15-26. Schopf, J. W. (2006). Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 869-885. Schneider, D., Arp, G., Reimer, A., Reitner, J., & Daniel, R. (2013). Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PloS one, 8(6), e66662. St. Clair, S., Saraylou, M., Melendez, D., Senn, N., Reitz, S., Kananipour, D., & Alvarez, A. (2020). Analysis of the soil microbiome of a Los Angeles urban farm. Applied and Environmental Soil Science, 2020, 1-16. Staley, J. T., & Brenner, D. J. (2015). Enhydrobacter. Bergey's Manual of Systematics of Archaea and Bacteria, 1-3. Subramanian, S. B., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2010). Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water research, 44(7), 2253-2266. Sun, B., Zhao, H., Zhao, Y., Tucker, M. E., Han, Z., & Yan, H. (2020). Bio-precipitation of carbonate and phosphate minerals induced by the bacterium Citrobacter freundii ZW123 in an anaerobic environment. Minerals, 10(1), 65. Thurber, R. V., Willner‐Hall, D., Rodriguez‐Mueller, B., Desnues, C., Edwards, R. A., Angly, F., Dinsdale, E., Kelly, L., & Rohwer, F. (2009). Metagenomic analysis of stressed coral holobionts. Environmental microbiology, 11(8), 2148-2163. Visscher, P. T., Reid, R. P., Bebout, B. M., Hoeft, S. E., Macintyre, I. G., & Thompson, J. A. (1998). Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling. American Mineralogist, 83(11-12_Part_2), 1482-1493. Webster, N. S., Smith, L. D., Heyward, A. J., Watts, J. E., Webb, R. I., Blackall, L. L., & Negri, A. P. (2004). Metamorphosis of a scleractinian coral in response to microbial biofilms. Applied and Environmental Microbiology, 70(2), 1213-1221. White III, R. A., Chan, A. M., Gavelis, G. S., Leander, B. S., Brady, A. L., Slater, G. F., Lim, D. S. S., & Suttle, C. A. (2016). Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community. Frontiers in microbiology, 6, 1531. White, R. A. (2020). The Global Distribution of Modern Microbialites: Not So Uncommon After All. Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth, 107-134. Yang, S. H., Lee, S. T., Huang, C. R., Tseng, C. H., Chiang, P. W., Chen, C. P., Chen, H. J., & Tang, S. L. (2016). Prevalence of potential nitrogen‐fixing, green sulfur bacteria in the skeleton of reef‐building coral Isopora palifera. Limnology and oceanography, 61(3), 1078-1086. Yanez-Montalvo, A., Águila, B., Gómez-Acata, S., Mass-Vargas, M., Cabanillas-Terán, N., Vega-Zepeda, A., Bahena, H., Hernández-Arana, H., & Falcón, L. I. (2021). Depth related structure and microbial composition of microbialites in a karst sinkhole, Cenote Azul, Mexico. Geomicrobiology Journal, 38(3), 237-251. Zavarzin, G. A. (2002). Microbial geochemical calcium cycle. Microbiology (00262617), 71(1). Zhuang, L., Liu, Y., Wang, L., Wang, W., & Shao, Z. (2015) Erythrobacter atlanticus sp. nov., a bacteriumfrom ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 65:3714–3719.
|