跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 03:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾芷萍
研究生(外文):Chih-Ping Chung
論文名稱:內頸靜脈逆流對於腦部循環的影響
論文名稱(外文):The Impacts of Jugular Venous Reflux on Cerebral Circulation
指導教授:胡漢華胡漢華引用關係林幸榮林幸榮引用關係
指導教授(外文):Han-Hwa HuShing-Jon Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:126
中文關鍵詞:內頸靜脈逆流腦血流白質病變
外文關鍵詞:jugular venous refluxcerebral blood flowleukoaraiosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:768
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
內頸靜脈是一條腦靜脈回流的主要通道,因此異常的內頸靜脈構造或是血流狀況皆可能影響腦部靜脈回流異常,而造成腦部病變。越來越多的研究顯示內頸靜脈逆流和某些神經疾病有相關。但是目前依然缺乏證據證明內頸靜脈逆流會回傳靜脈壓力至腦部靜脈系統並且影響腦部循環。我的研究目標如下:(一)建立一個正常台灣人的內頸靜脈血流超音波參數之資料庫;(二)證明內頸靜脈逆流可以回傳靜脈壓力至腦部靜脈系統;(三)證明內頸靜脈逆流不但可以回傳靜脈壓力至腦部靜脈系統,還會進一步影響腦血流,導致腦血流下降;(四)內頸靜脈逆流與臨床疾病的相關性,提出內頸靜脈逆流與年紀相關的腦部白質病變之間相關的證據;(五)建立一個內頸靜脈逆流的動物模式。
雖然許多研究利用超音波發現內頸靜脈血流異常和某些神經疾病有相關性,但是目前還沒有一個大型正常人的內頸靜脈血流超音波參數之資料庫可供比較或是相關性的探討研究。我第一個研究是用一擬訂的超音波檢查流程與方法,來收集349位涵蓋各個年齡層正常成人的內頸靜脈血流超音波參數。這大型的資料庫除了可供未來臨床診斷或是研究臨床相關性參考外,還發現,隨著年齡上升,內頸靜脈血流的許多超音波參數顯示出內頸靜脈下游回流阻力上升。
視網膜循環是由腦部靜脈系統負責其靜脈回流。視網膜靜脈擴張通常代表著下游的靜脈壓力上升。在我第二個研究中,我發現在Valsalva maneuver所造成的內頸靜脈壓力上升會導致視網膜靜脈擴張,此外,有內頸靜脈逆流的人其視網膜靜脈擴張的程度較沒有內頸靜脈逆流的人較大。這個實驗成功證明了我其中一個假設,即內頸靜脈逆流會經由回傳靜脈壓力至腦部靜脈系統來影響腦部靜脈回流。第三個研究則進一步利用穿顱超音波,來觀察腦血流量在Valsalva maneuver時的改變是否會因為有否內頸靜脈逆流而有所不同。結果顯示內頸靜脈逆流會影響腦血流的假設是正確的,有內頸靜脈逆流的人其在Valsalva maneuver時腦血流的確較沒有內頸靜脈逆流的人低。
與年紀相關的腦部白質病變是老年人血管性失智與失能的一主要原因,即使有臨床的重要性,其病因目前仍未明。根據前面三個研究子題的結果與許多對於與年紀相關的腦部白質病變的相關研究,我提出了內頸靜脈逆流與此腦部白質病變的機轉有關的假設,並且進行了臨床研究。結果顯示有較嚴重內頸靜脈逆流的老年人,其腦部白質病變的嚴重度較高,尤其是在後腦區域。此外,這個相關性在越高齡的病患當中越顯著。
最後,為了往後可以更清楚明白長時間內頸靜脈逆流對於腦部的影響,我建立了一個內頸靜脈逆流的動物模式,並且探討了利用3D time-of-flight 核磁共振動脈攝影方法,應用在類似頸靜脈逆流動物模型手術成功與否的測試。
相較於腦動脈系統,腦靜脈系統的發展與已知的知識是遠遠落後的。這造成了我們遺漏或是低估了與腦靜脈回流異常有關的神經疾病,甚至許多重要但是機轉未明的神經疾病都和腦靜脈回流異常有關。我的研究結果首次提出證據證明內頸靜脈逆流可以回傳靜脈壓力至腦部靜脈系統,並且進一步影響腦血流,導致腦血流下降。這些結果將有助於釐清許多已發現和腦靜脈回流異常有相關的神經疾病其病理機轉,這當中包含了我們所發現相關的與年紀相關的腦部白質病變。

Internal jugular vein (IJV) is a main cerebral venous outflow tract, which abnormalities in structures and hemodynamics are presumed to impair cerebral venous drainage. More and more researches have found significant associations between jugular venous reflux (JVR) and neurological disorders. However, there still lacks evidences that JVR could influence cerebral circulation. The aims of my research are to: (1) elucidate the hemodynamics of IJV in Taiwan population; (2) proof that the retrogradely-transmitted venous pressure of JVR could reach cerebral venous system; (3) provide evidences that JVR has an influence in cerebral blood flow; (4) proof one of our hypotheses of a relationship between JVR and age-related white matter changes; and (5) establish an animal model which mimics the JVR phenomenon in human.
The first study has provided a normal reference set of IJV hemodynamic parameters derived from a large, healthy population over a wide range of age which, until now, has been lacking. Color-coded duplex ultrasonography was performed on the IJVs of 349 subjects. With increasing age, I have found increased lumen area, decreased flow velocities, and increased frequency of JVR in bilateral IJV of our population, which suggests increased IJV outflow impedance with aging.
Retinal circulation is drained by cerebral venous system. A dilated retinal venule usually indicates an elevated downstream venous pressure. In the second study, I have shown that elevated venous pressure in IJV during Valsalva maneuver would result in dilated retinal venules, and in individuals with JVR, the extent of retinal venules dilatation is more significant. These results provide the evidence that elevated venous pressure in IJV and JVR respectively could retrogradely transmit venous pressure into cerebral venous system. The third study used transcranial Doppler study to examine the cerebral blood flow changes during Valsalva maneuver in people with JVR. The results have shown that there was a more decrease in cerebral blood flow during Valsalva maneuver in people with JVR than people without JVR, which proof the hypothesis that JVR has an impact on cerebral blood flow.
Age-related white matter changes are one major cause of vascular dementia and disable in the elderly people, however, the etiology is still unclear. Based on my above findings of JVR and previous research results of age-related white matter changes, I proposed that JVR plays a role in the pathogenesis of age-related white matter changes. The clinical study showed people with severe JVR exhibit more severe age-related white matter changes, especially in caudal brain regions. I also demonstrate age-dependent JVR effects on the severity of age-related white matter changes.
Finally, I established an animal model which mimics JVR phenomenon in human. A resourceful validating method using 3D time-of-flight MRA for animal model with JVR has also been conferred in the present work. This animal model could be used to future studies on the effects of long-term JVR on cerebral parenchyma.
Compared with cerebral arterial system, the knowledge about the pathophysiology of cerebral venous system disorders is far falling behind. This might lead to an underestimation of neurological disorders caused by cerebral venous drainage insufficiency. My present researches could be contributive to elucidate the effects of JVR in cerebral circulation and its clinical implications. These results could shed lights on the pathophysiology of several unknown-etiology neurological disorders which have been found to be associated with cerebral venous drainage insufficiency.

1. Introduction
1.1. Background
1.1.1. Cerebral venous system
1.1.2. Cerebral venous blood drainage
1.1.3. Extracranial venous drainage pathway
1.1.4. Internal jugular vein
1.1.5. Jugular venous reflux
1.2. Jugular Venous Blood Flow Patterns in Taiwan Population
1.3. The Impacts of Jugular Venous Reflux on Cerebral Circulation
1.3.1. Cerebral venous hypertension in arteriovenous malformation and cerebral sinus-venous thrombosis
1.3.2. Would the retrograde-transmitted venous pressure by jugular venous reflux affect cerebral venous drainage?
1.3.3. Would jugular venous reflux decrease cerebral blood flow?
1.4. Hypothesis: Jugular Venous Reflux Plays a Role in the Pathogenesis of Age-related White Matter Changes
1.4.1. Age-related white matter changes
1.4.2. Pathology of venous ischemia and age-related white matter changes
1.4.3. Age and hypertension: predictors of age-related white matter changes
1.4.4. White matter abnormality and dementia in cerebral venous hypertension
1.4.5. Impaired cerebral endothelial function in age-related white matter changes and cerebral venous hypertension
1.4.6. Periventricular venule collagenosis: a reactive change to long-term cerebral venule hypertension
1.4.7. Summary
1.5. Animal Model of Jugular Venous Reflux

2. Materials and Methods
2.1. Jugular Venous Blood Flow Patterns in Taiwan Population
2.2. Jugular Venous Reflux and Cerebral Venous Drainage
2.3. Jugular Venous Reflux and Cerebral Blood Flow Changes
2.4. Jugular Venous Reflux and Age-related White Matter Changes
2.5. Animal Model of Jugular Venous Reflux

3. Results
3.1. Jugular Venous Blood Flow Patterns in Taiwan Population
3.2. Jugular Venous Reflux and Cerebral Venous Drainage
3.3. Jugular Venous Reflux and Cerebral Blood Flow Changes
3.4. Jugular Venous Reflux and Age-related White Matter Changes
3.5. Animal Model of Jugular Venous Reflux

4. Discussion
4.1. Increased Jugular Venous Drainage Impedance with Aging
4.2. Jugular Venous Reflux could Retrogradely Transmit Venous Pressure into Cerebral Circulation and Affect Cerebral Venous Drainage
4.3. Jugular Venous Reflux could Influence Cerebral Blood Flow
4.4. Elderly People with Severe Jugular Venous Reflux have More Severe Age-related White Matter Changes
4.5. Establishment of an Animal Model of Jugular Venous Reflux and the Validation Method

5. Conclusion and Perspectives

6. References

7. Figures

8. Tables

9. Appendix

10. Publications

1. Pang CCY. Autonomic control of the venous system in health and disease: effects of drugs. Pharmacology & Therapeutics 2001; 90: 179-230.
2. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 1975; 43: 523-34.
3. Schaller B, Graf R. Cerebral venous infarction: the pathophysiological concept. Cerebrovasc Dis 2004; 18: 179-88.
4. Bousser MG, Chiras J, Bories J, Castaigne P. Cerebral venous thrombosis--a review of 38 cases. Stroke 1985; 16: 199-213.
5. Yuh WT, Simonson TM, Wang AM, Koci TM, Tali ET, Fisher DJ, et al. Venous sinus occlusive disease: MR findings. AJNR 1994; 15: 309-16.
6. Schaller B, Graf R, Wienhard K, Heiss WD. A new animal model of cerebral venous infarction: ligation of the posterior part of the superior sagittal sinus in the cat. Swiss Med Wkly 2003; 133: 412-8.
7. Schaller B, Graf R, Sanada Y, Tolnay M, Rosner G, Wienhard K, et al. Hemodynamic changes after occlusion of the posterior superior sagittal sinus: an experimental PET study in cats. AJNR 2003; 24: 1876-80.
8. Miyamoto K, Heimann A, Kempski O. Microcirculatory alterations in a Mongolian gerbil sinus-vein thrombosis model. J Clin Neurosci 2001; 8(Suppl 1): 97-105.
9. Andeweg J. The anatomy of collateral venous outflow from the brain and its valus in aetiological interpretation of intracranial pathology. Neuroradiology 1996; 38: 621-8.
10. Goetz CG. Jean-Martin Charcot and the aging brain. Arch Neurol 2002; 59: 1821-4.
11. Jay V. The legacy of Jean-Martin Charcot. Arch Pathol Lab Med 2000; 124: 10-1.
12. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Research Reviews 2004; 46: 243-60.
13. Meder JF, Chiras J, Roland J, Guinet P, Bracard S, Bargy F. Venous territories of the brain. J Neuroradiol 1994; 21: 118-33.
14. Schmidek HH, Auer LM, Kapp JP. The cerebral venous system. Neurosurgery 1985; 17: 663-78.
15. Suzuki Y, Ikeda H, Shimada M, Ikeda Y, Matsumoto K. Variations of the basal vein: identification using three-dimensional CT angiography. AJNR 2001; 22: 670-6.
16. Browning H. The confluence of dural venous sinuses. Am J Anat 1953; 93: 307-29.
17. Seoane E, Rhoton AL Jr. Compression of the internal jugular vein by the transverse process of the atlas as the cause of cerebellar hemorrhage after supratentorial craniotomy. Surg Neurol 1999; 51: 500-5.
18. Ono M, Rhoton AL Jr, Peace D, Rodriquez RJ. Microsurgical anatomy of the deep venous system of the brain. Neurosurgery 1984; 15: 621-57.
19. Taveras JM Angiography in Neuroradiology 3rd Edition. Baltimore: Williams & Wilkins. 1996; pp 998.
20. Wolf BS, Newman CM, Schlesinger B. The diagnostic value of the deep cerebral veins in cerebral angiography. Radiology 1955; 64: 161-7.
21. Schoser BG, Riemenschneider N, Hansen HC. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study. J Neurosurg 1999; 91: 744-9.
22. Shakhnovich AR, Shakhnovich VA, Galushkina AA. Noninvasive assessment of the elastance and reserve capacity of the craniovertebral contents via flow velocity measurements in the straight sinus by TCD during body tilting test. J Neuroimaging 1999; 9: 141-9.
23. Caruso RD, Rosenbaum AE, Chang JK, Joy SE. Craniocervical junction venous anatomy on enhanced MR images: the suboccipital cavernous sinus. AJNR 1999; 20: 1127-31.
24. Valdueza JM, Munster Tv, Hoffman O, Schreiber SJ, Einhaupl KM. Postural dependency of the cerebral venous outflow. Lancet 2000; 355: 200-1.
25. Ruiz DSM, Gailloud P, Rufenacht DA, Delavelle J, henry F, Fasel JHD. The craniocervical venous system in relation to cerebral venous drainage. AJNR 2002; 23: 1500-8.
26. Schreiber SJ, Lurtzing F, Gotze R, Doepp F, Klingebiel R, Valdueza JM. Extrajugular pathways of human cerebral venous blood drainage assessed by duplex ultrasound. J Appl Physiol 2003; 94: 1802-5.
27. Doepp F, Schreiber SJ, Munster Tv, Rademacher J, Klingebiel R, Valdueza JM. How does the blood leave the brain? A systemic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 2004; 46: 565-70.
28. Eckenhoff JE. The physiologic significance of the vertebral venous plexus. Surg Gynecol Obstet 1970; 131: 72-8.
29. Epstein HM, Linde HW, Crampton AR, Ciric IS, Eckenhoff JE. The vertebral venous plexus as a major cerebral venous outflow tract. Anesthesiology 1970; 32: 332-7.
30. Arnautovic KI, Al-Mefty O, Pait TG, Krisht AF, Husain MM. The suboccipital cavernous sinus. J Neurosurg 1997; 86: 252-62.
31. Ginsberg L. The posterior condylar canal. AJNR 1994; 15: 969-72.
32. Weissman JL. Condylar canal vein: unfamiliar normal structure as seen at CT and MR imaging. Radiology 1994; 190: 81-4.
33. Alperin N, Lee SH, Mazda M, Hushek SG, Roitberg B, Goddwin J, et al. Evidence for the importance of extracranial venous flow in patients with idiopathic intracranial hypertension. Acta Neurochir (Suppl) 2005; 95: 129-32.
34. Gius JA, Grier DH. Venous adaptation following bilateral radical neck dissection with excision of the jugular vein. Surgery 1950; 28: 305-21.
35. Sugarbaker ED, Wiley HM. Intracranial pressure studies incident to resection of the internal jugular vein. Cancer 1951; 4: 242-50.
36. Doepp F, Hoffmann O, Schreiber S, Lammert I, Einhaupl KM, Valdueza JM. Venous collateral blood flow assessed by Doppler ultrasound after unilateral radical neck dissection. Ann Otol Rhinol Laryngol 2001; 110: 1055-8.
37. Tankisi A, Larsen JR, Rasmussen M, Dahl B, Cold GE. The effect of 10 reverse Trendelenburg position on ICP and CPP in prone positioned patients subjected to craniotomy for occipital or cerebellar tumors. Acta Neurochir 2002; 144: 665-70.
38. Bergsneider M, Alwan AA, Falkson L, Rubinstein EH. The relationship of pulsatile cerebrospinal fluid flow to cerebral blood flow and intracranial pressure: a new theoretical model. Acta Neurochir (Suppl) 1998; 71: 266-8.
39. Burrows PE, Konez O, Birdorff A. Venous variations of the brain and cranial vault. Neuroimaging Clin N Am 2003; 13: 13-26.
40. Amoore JN, Santamore WP. Venous collapse and the respiratory variability in systemic venous return. Cardiovascular research 1994; 28: 472-9.
41. Chung CP, Hsu HY, Chang FC, Sheng WY, Hu HH. Detection of Intracranial Venous Reflux in Patients of Transient Global Amnesia. Neurology 2006; 66: 1873-7.
42. Chung CP, Hsu HY, Chao AC, Sheng WY, Hu HH. Transient global amnesia: cerebral venous outflow impairment – insight from the abnormal flow patterns of the internal jugular vein. Ultrasound Med Biol 2007; 33: 1727-35.
43. Parker JL, Flucker CJ, Harvey N, Maguire AM, Russell WC, Thompson JP. Comparison of external jugular and central venous pressures in mechanically ventilated patient. Anaesthesia 2002; 57: 596-600.
44. Harvey W. Cardiac Classics St Louis: C.V. Mosby. 1941 pp. 19.
45. Pucheu A, Evans J, Thomas D, Scheuble C, Pucheu M. Doppler ultrasonography of normal neck veins. J Clin Ultrasound 1994; 22: 367-73.
46. Silva MA, Deen KI, Fernando DJS, Sheriffdeen AH. The internal jugular vein valve may have a significance role in the prevention of venous reflux: evidence from live and cadaveric human subjects. Clin Physiol & Func Im 2002; 22: 202-5.
47. Brownlow RL, Mckinney WM. Ultrasonic evaluation of jugular venous valve competence. J Ultrasound Med 1985; 4: 169-72.
48. Akkawi NM, Agosti C, Borroni B, Rozzini L, Magoni M, Vignolo LA, et al. Jugular valve incompetence: a study using air contrast ultrasonography on a general population. J Ultrasound Med 2002; 21: 747–51.
49. Caplan LR, Ringelstein EB. Color-coded duplex ultrasonography of the cerebral vessels. Schattauer. New York 1999
50. Hsu HY, Chao AC, Chen YY, Yang FY, Chung CP, Sheng WY, et al. Reflux of jugular and retrobulbar venous flow in transient monocular blindness. Ann Neurol 2008; 63: 247-53.
51. Akkawi NW, Agosti C, Rozzini L, Anzola GP, Padovani A. Transient global amnesia and venous flow patterns (letter). Lancet 2001; 357: 639.
52. Chung CP, Hsu HY, Wong WC, Sheng WY and Hu HH. Flow Volume in the Jugular Vein and Related Hemodynamics in the Branches of the Jugular Vein. Ultrasound Med Biol 2007; 33: 500-5.
53. Dresser LP, Mckinney WM. Anatomic and pathophysiologic studies of the human jugular valve. Am J Surg 1987; 154: 220-4.
54. Fisher J, Vagahaiwalla F, Tsitlik J, Levin H, Brinker J, Weisfeldt M, et al. Determinants and clinical significance of jugular venous valve competence. Circulation 1982; 65: 188-96.
55. Doepp F, Bahr D, John M, Hoernig S, Valdueza JM, Schreiber SJ. Internal jugular vein valve incompetence in COPD and primary pulmonary hypertension. J Clin Ultrasound 2008; 36: 480-4.
56. Pascarella L, Schmid-Schonbein GW, Bergan J. An animal model of venous hypertension: the role of inflammation in venous valve failure. J Vasc Surg 2005; 41: 303-11.
57. Takase S, Pascarella L, Bergan JJ, Schmid-Schonbein GW. Hypertension-induced venous valve remodeling. J Vasc Surg 2004; 39: 1329-34.
58. Wu X, Studer W, Erb T, Skarvan K, Seeberger MD. Competence of the internal jugular vein valve is damaged by cannulation and catheterization of the internal jugular vein. Anesthesiology 2000; 93: 319-24.
59. Chuang YM, Hu HH. Cough headache and thoracic inlet valvular competence in uremia. Eur Neurol 2005; 53: 78-80.
60. Doepp F, Valdueza JM, Schreiber SJ. Imcompetence of internal jugular valve in patients with primary exertional headache: a risk factor? Cephalalgia 2008; 28: 182-5.
61. Lewis SL. Aetiology of transient global amnesia. Lancet 1998; 352: 397-9.
62. Sander D, Winbeck K, Etgen T, Knapp R, Klingelhöfer J, Conrad B. Disturbance of venous flow patterns in patients with transient global amnesia. Lancet 2000; 356: 1982-4.
63. Akkawi NM, Agosti C, Anzola GP, Borroni B, Magoni M, Pezzini A, et al. Transient global amnesia: a clinical and sonographic study. Eur Neurol. 2003; 49: 67-71.
64. Schreiber SJ, Doepp F, Klingebiel R, Valdueza JM. Internal jugular vein valve incompetence and intracranial venous anatomy in transient global amnesia. J Neurol Neurosurg Psychiatry 2005; 76: 509-13.
65. Recek C. The venous reflux. Angiology 2004; 55: 541-8.
66. Paksoy Y, Genc BO, Genc E. Retrograde flow in the left inferior petrosal sinus and blood steal of the cavernous sinus associated with central vein stenosis: MR angiographic findings. AJNR 2003; 24: 1364-8.
67. Lamoureux J. Cervical venous reflux: a normal variant of radionuclide cerebral blood flow study in nuclear medicine. Am J Roentgenol Radium Ther Nucl Med 1975; 124: 276-80.
68. Steinbach JJ, Mattar AG, Mahin DT. Alteration of the cerebral bloodflow study due to reflux in internal jugular veins. J Nucl Med 1976; 17: 61-4.
69. Rao BK, Polcyn RE, Lieberman LM. Influence of respiratory maneuvers on jugular venous reflux. Clinl Nucl Med 1981;6:23-6.
70. Bok B, Marsault C, Aubin ML, Bar D, Aboulker J. Jugular venous reflux in cerebral radionuclide angiography: an explanation. Eur J Nucl Med 1978; 3: 63-5.
71. Tanaka T, Uemura K, Takahashi M, Takehara S, Fukaya T, Tokuyama T, et al. Compression of the left brachiocephalic vein: cause of high signal intensity of the left sigmoid sinus and internal jugular vein on MR images. Radiology 1993; 188: 355-61.
72. Conkbayir I, Men S, Yanik B, Hekimoglu B. Color Doppler sonographic finding of retrograde jugular venous flow as a sign of innominate vein occlusion. J Clin Ultrasound 2002; 30: 392-8.
73. Silverstein GE, Burke G, Goldberg D. Superior vena caval system obstruction caused by benign endothoracic goiter. Dis Chest 1969; 56: 519-23.
74. Peart RA, Driedger AA. Effect of obstructed mediastinal venous return on dynamic brain blood flow studies. Case report. J Nucl Med 1975; 16: 622-5.
75. Fred GI, Wukasch DC, Petrany Z. Transient compression of the left innominate vein. Circulation 1964; 29: 758-61.
76. Tatsuya M. Interpretation of 99m Tc superior vanacavagram and results of studies in 92 patients. Radiology 1973; 108: 339-52.
77. Hayt DB, Perez LA. Cervical venous reflux in dynamic brain scintigraphy. J Nucl Med 1976; 17: 9-12.
78. Chung CP, Chao AC, Hsu HY, Lin SJ, Hu HH. Decreased jugular venous distensibility in migraine. Ultrasound Med Biol 2010; 36: 11-6.
79. Chung CP, Hsu HY, Chao AC, Cheng CY, Lin SJ, Hu HH. Jugular venous reflux affects ocular venous system in transient monocular blindness. Cerebrovasc Dis 2010; 29 :122-9.
80. Zamboni P, Menegatti E, Galeotti R, Malagoni AM, Tacconi G, Dall'Ara S, et al. The value of cerebral Doppler venous haemodynamics in the assessment of multiple sclerosis. J Neurol Sci 2009; 282: 21-7.
81. Attubato MJ, Katz ES, Feit F, Bernstein N, Schwartzman D, Kronzon I. Venous changes occurring during the Valsalva maneuver: evaluation by intravascular ultrasound. Am J Cardiol 1994; 74: 408-10.
82. Stolz E, Gerriets T, Bodeker RH, Hugens-Penzel M, Kaps M. Intracranial venous hemodynamics is a factor related to a favorable outcome in cerebral venous thrombosis. Stroke 2002; 33: 1645-50.
83. Cognard C, Gobin YP, Pierot L, Bailly AL, Houdart E, Casasco A, et al. Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 1995; 194: 671-80.
84. Lasjaunias P, Chiu M, ter Brugge K, Tolia A, Hurth M, Bernstein M. Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg 1986; 64: 724-30.
85. Karabudak R, Caner H, Oztekin N, Ozcan OE, Zileli T. Thrombosis of intracranial venous sinuses: aetiology, clinical findings and prognosis of 56 patients. J Neurosurg Sci 1990; 34: 117-21.
86. Stam J. Thrombosis of the cerebral veins and sinuses. NEJM 2005; 352: 1791-8.
87. Bousser MG, Ferro JM. Cerebral venous thrombosis: an update. Lancet Neurol 2007; 6: 162-70.
88. Yoshimoto Y, Endo M, Mori T, Wakai S. Correlation between venous stump pressure and brain damage after cortical vein occlusion: an experimental study. J Neurosurg 1997; 86: 694-8.
89. Kurokawa Y, Hashi K, Okuyama T, Uede T. Regional ischemia in cerebral venous hypertension due to embolic occlusion of the superior sagittal sinus in the rat. Surg Neurol 1990; 34: 390-5.
90. Gotoh M, Ohmoto T, Kuyama H. Experimental study of venous circulatory disturbances by dural sinus occlusion. Acta Neurochir (Wien) 1993; 124: 120–6.
91. Kosnik EJ, Hunt WE, Miller CA. Dural arteriovenous malformations. J Neurosurg 1974; 40: 322-9.
92. Viñuela F, Nombela L, Roach MR, Fox AJ, Pelz DM. Stenotic and occlusive disease of the venous drainage system of deep brain AVM's. J Neurosurg 1985; 63: 180-4.
93. Nakase H, Takeshima T, Sakaki T, Heimann A, Kempski O. Superior sagittal sinus thrombosis: a clinical and experimental study. Skull Base Surg 1998; 8: 169-74.
94. Tuzgen S, Canbaz B, Kaya AH, Sanus GZ, Kuday C, Memis M, et al. Experimental study of rapid versus slow sagittal sinus occlusion in dogs. Neurol India 2003; 51: 482-6.
95. Ueda K, Nakase H, Miyamoto K, Otsuka H, Sakaki T. Impact of anatomical difference of the cerebral venous system on microcirculation in a gerbil superior sagittal sinus occlusion model. Acta Neurochir (Wien) 2000; 142: 75-82.
96. Ungersböck K, Heimann A, Kempski O. Cerebral blood flow alterations in a rat model of cerebral sinus thrombosis. Stroke 1993; 24: 563-9
97. Schaller C, Nasase H, Kotani A, Nishioka T, Meyer B, Sakaki T. Impairment of autoregulation following cortical venous occlusion in the rat. Neurol Res 2002; 24: 210–4.
98. Kanaiwa H, Kuchiwaki H, Inao S, Sugita K. Changes in the cerebrocortical capillary network following venous sinus occlusion in cats. Surg Neurol 1995; 44: 172–80.
99. Otsuka H, Ueda K, Heimann A, Kempski O. Effects of cortical spreading depression on cortical blood flow, impedance, DC potential, and infarct size in a rat venous infarct model. Exp Neurol 2000; 162: 201–14.
100. Nakase H, Kempski OS, Heimann A, Takeshima T, Tintera J. Microcirculation after cerebral venous occlusions as assessed by laser Doppler scanning. J Neurosurg 1997; 87: 307-4.
101. Nakase H, Nagata K, Otsuka H, Sakaki T, Kempski O. Local cerebral blood flow autoregulation following "asymptomatic" cerebral venous occlusion in the rat. J Neurosurg 1998; 89: 118-24.
102. Vosko MR, Röther J, Friedl B, Bültemeier G, Kloss CU, Hamann GF. Microvascular damage following experimental sinus-vein thrombosis in rats. Acta Neuropathol 2003; 106: 501-5.
103. Morgan MK, Johnston I, Besser M, Baines D. Cerebral arteriovenous malformations, steal, and the hypertensive breakthrough threshold. An experimental study in rats. J Neurosurg 1987; 66: 563-7.
104. Morgan MK, Anderson RE, Sundt TM Jr. The effects of hyperventilation on cerebral blood flow in the rat with an open and closed carotid-jugular fistula. Neurosurgery 1989; 25: 606-11.
105. Bederson JB, Wiestler OD, Brüstle O, Roth P, Frick R, Yaşargil MG. Intracranial venous hypertension and the effects of venous outflow obstruction in a rat model of arteriovenous fistula. Neurosurgery 1991; 29: 341-50.
106. Nornes H, Grip A. Hemodynamic aspects of cerebral arteriovenous malformations. J Neurosurg 1980; 53: 456-64.
107. Shintaku M, Yasui N. Chronic superior sagittal sinus thrombosis with phlebosclerotic changes of the subarachnoid and intracerebral veins. Neuropathology 2006; 26: 323-8.
108. Wong TY, Klein R, Klein BE, Tielsch JM, Hubbard L, Nieto FJ. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 2001; 46: 59-80.
109. Robinson MK, Halpern JI. Retinal vein occlusion. Am Fam Physician 1992; 45: 2661-6.
110. Schirmer CM, Hedges TR 3rd. Mechanisms of visual loss in papilledema. Neurosurg focus 2007; 23: E5.
111. De Burgh Daly M. Interactions between respiration and circulation. Handbook of Physiology. The Respiratory system 1986; 2: 569-70.
112. Porth CJM, Virinderjit SB, Tristani FE, Smith JJ. The Valsalva maneuver: mechanisms and clinical implications. Heart Lung 1984; 13: 507-18.
113. Hamilton WF, Woodbury RA, Harper HT Jr. Physiologic relationships between intrathoracic, intraspinal and arterial pressures. JAMA 1936; 107: 853-6.
114. Greenfield JC Jr, Rembert JC, Tindall GT. Transient changes in cerebral vascular resistance during the Valsalva maneuver in man. Stroke 1984; 15: 76-9.
115. Tiecks FP, Lam AM, Matta BF, Strebel S, Douville C, Newell DW. Effects of the Valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler study. Stroke 1995; 26: 1386-92.
116. William B. Simultaneous cerebral and spinal fluid pressure recordings. I. Technique, physiology, and normal adults. Acta Neurochir (Wien) 1981; 58: 167-85.
117. Hamilton WF, Woodbury RA, Harper HT Jr. Arterial, cerebrospinal and venous pressures in man during cough and strain. Am J Physiol 1944; 141: 42-50.
118. Pott F, van Lieshout J, Ide K, Madsen P, Secher NH. Middle cerebral artery blood velocity during a Valsalva maneuver in the standing position. J Appl Phsyiol 2000; 88: 1545-50.
119. Tiecks FP, Douville C, Byrd S, Lam AM, Newell DW. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke 1996; 27: 1177-82.
120. van Beek AH, Claassen JA, Rikkert MG, Jensen RW. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly. J Cereb Blood Flow Metab 2008; 28: 1071-85.
121. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev 1990; 2: 161-92.
122. Zhang R, Crandall CG, Levine BD. Cerebral hemodynamics during the Valsalva maneuver. Insights from ganglionic blockade. Stroke 2004; 35: 843-7.
123. Giller CA, Bowman G, Dyer h, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 1993; 32: 737-41.
124. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 1994; 25: 793-7.
125. Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious human during simulated orthostasis. Stroke 2000; 31: 1672-8.
126. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57: 769-74.
127. Aaslid R. Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci 2006; 21: 216-28.
128. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 1995; 26: 1014-9.
129. Jansen GF, Krins A, Basnyat B, Bosch A, Odoom JA. Cerebral autoregulation in subjects adapted and not adapted to high altitude. Stroke 2000; 31: 2314-8.
130. Larsen FS, Olsen KS, Ilansen BA, Paulson OB, Knudsen GM. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke 1994; 25: 1985-98.
131. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke 1996; 27: 1829-34.
132. Panerai RB, Kelsall AW, Rennie JM, Evans DH. Cerebral autoregulation dynamics in premature newborns. Stroke 1995; 26: 74-80.
133. Reinhard M, Roth M, Muller T, Czosnyka M, Timmer J, Hetzel A. Cerebral autoregulation in carotid artery occlusive disease assessed from spontaneous blood pressure fluctuations by the correlation coefficient index. Stroke 2003; 34: 2138-44.
134. Aaslid R, Newell DW, Stooss R, Sorteburg W, Lindegaard KF. Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 1991; 22: 1148-54.
135. Mahony P, Panerai R, Deverson S, Hayes P, Evans D. Assessment of the thigh cuff technique for measurement of dynamic cerebral autoregulation. Stroke 2000; 31: 476-80.
136. Awad IA, Johnson PC, Spetzler RF, Hodak JA. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. Postmortem pathological findings. Stroke 1986; 17: 1090–7.
137. Kertesz A, Black SE, Tokar G, Benke T, Carr T, Nicholson L. Periventricular and subcortical hyperintensities on magnetic resonance imaging. ‘Rims, caps, and unidentified bright objects’. Arch Neurol 1988; 45: 404–8.
138. Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical Correlates of White Matter Findings on Cranial Magnetic Resonance Imaging of 3301 Elderly People: The Cardiovascular Health Study. Stroke 1996; 27: 1274 –82.
139. Pantoni L. Leukoaraiosis: from an ancient term to an actual marker of poor prognosis. Stroke 2008; 39; 1401-3.
140. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 2004; 75: 441–7.
141. Tullberg M, Fletcher E, DeCarli C, Mungas D, Reed BR, Harvey DJ, et al. White matter lesions impair frontal lobe function regardless of their location. Neurology 2004; 63: 246–53.
142. Reed BR, Eberling JL, Mungas D, Weiner M, Kramer JH, Jagust WJ. Effects of white matter lesions and lacunes on cortical function. Arch Neurol 2004; 61: 1545–50.
143. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005; 128: 2034–41.
144. Fazekas F, Niederkorn K, Schmidt R, Offenbacher H, Horner S, Bertha G, et al. White matter signal abnormalities in normal individuals: correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 1988; 19: 1285-8.
145. Kawamura J, Meyer JS, Terayama Y, Weathers S. Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke 1991; 22; 609-14.
146. Hatazawa J, Shimosegawa E, Satoh T, Toyoshima H, Okudera T. Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging. Stroke 1997; 28: 1944-7.
147. Tohgi H, Yonezawa H, Takahashi S, Sato N, Kato E, Kudo M, et al. Cerebral blood flow and oxygen metabolism in senile dementia of Alzheimer's type and vascular dementia with deep white matter changes. Neuroradiology 1998; 40: 131-7.
148. Garcia JH, Budka H, McKeever PE, Sarnat HB, Sima AAF. Neuropathology: the diagnostic approach. Mosby, 1997. p 263-81.
149. Caplan LR, Schoene WC. Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease). Neurology 1978; 28: 1206–15.
150. Babikian V, Ropper AH. Binswanger’s disease: a review. Stroke 1987; 18: 2–12.
151. Akiguchi I, Tomimoto H, Suenaga T, Wakita H, Budka H. Blood brain barrier dysfunction in Binswanger’s disease; an immunohistochemical study. Acta Neuropathol 1998; 95: 78–84.
152. Munoz DG, Hastak SM, Harper B, Lee D, Hachinski VC. Pathologic correlates of increased signals of the centrum ovale on magnetic resonance imaging. Arch Neurol 1993; 50: 492– 7.
153. Smith EE, Gurol ME, Eng JA, Engel CR, Nguyen TN, Rosand J, et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology 2004; 63: 1606-12.
154. Black S ,Gao F, Bilbao J. Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke 2009; 40(3 Suppl): S48-52.
155. Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry 2007; 78: 702–6.
156. Klabunde RE. Cardiovascular physiology concepts. Philadelphia, PA: Lippincott Williams & Wilkins; 2004.
157. Safar ME, London GM, Levenson JA, Simon AC, Chau NP. Rapid dextran infusion in essential hypertension. Hypertension 1979; 1: 615-23.
158. London GM, Safar ME, Simon AC, Alexandre JM, Levenson JA, Weiss YA. Total effective compliance, cardiac output and fluid volumes in essential hypertension. Circulation 1978; 57: 995-1000.
159. Safar ME, London GM. Arterial and venous compliance in sustained essential hypertension. Hypertension 1987; 10: 133-9.
160. Ito N, Takeshita A, Higuchi S, Nakamura M. Venous abnormality in normotensive young men with a family history of hypertension. Hypertension 1986; 8: 142-6.
161. Widgren BR, Berglund G, Wikstrand J, Andersson OK. Reduced venous compliance in normotensive men with positive family histories of hypertension. J Hypertens 1992; 10: 459-65.
162. Takeshita A, Mark AL. Decreased venous distensibility in borderline hypertension. Hypertension 1979; 1: 202-6.
163. Waragai M, Takeuchi H, Fukushima T, Haisa T, Yonemitsu T. MRI and SPECT studies of dural arteriovenous fistulas presenting as pure progressive dementia with leukoencephalopathy: a cause of treatable dementia. Eur J Neurol 2006; 13: 754–9.
164. Yamakami I, Kobayashi E, Yamaura A. Diffuse white matter changes caused by dural arteriovenous fistula. J Clin Neurosci 2001; 8: 471–5.
165. Hurst RW, Bagley LJ, Galetta S, Glosser G, Lieberman AP, Trojanowski J, et al. Dementia Resulting from Dural Arteriovenous Fistulas: The Pathologic Findings of Venous Hypertensive Encephalopathy. AJNR 1998; 19: 1267–73.
166. Terborg C, Gora F, Weiller C, Röther J. Reduced vasomotor reactivity in cerebral microangiopathy: a study with near-infrared spectroscopy and transcranial Doppler sonography. Stroke 2000; 31: 924–9.
167. Hassan A, Hunt BJ, O'Sullivan M, Parmar K, Bamford JM, Briley D, et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain 2003; 126: 424–32.
168. Markus HS, Hunt B, Palmer K, Enzinger C, Schmidt H, Schmidt R. Markers of endothelial and haemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study. Stroke 2005; 36: 1410–4.
169. Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 1995; 194: 469–76.
170. Moody DM, Brown WR, Challa VR, Ghazi-Birry HS, Reboussin DM. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci 1997; 826: 103–16.
171. Mark E, Haacke M, Brown R: Magnetic resonance imaging: Physical principles and sequence design. Wiley-Liss, 1999.
172. Hubbard LD, Brothers RJ, King WN, Clegg LX, Klein R, Cooper LS, et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 1999; 106: 2269-80.
173. Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein BE. Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 2003; 27: 143-9.
174. Rudnicka AR, Burk RO, Edgar DF, Fitzke FW. Magnification characteristics of fundus imaging systems. Ophthalmology 1998; 105: 2186-92.
175. Heier H, Brinchmann-Hansen O. Reliable measurements from fundus photographs in the presence of focusing errors. Invest Ophthalmol Vis Sci 1989; 30: 674-7.
176. Patton N, Maini R, MacGillivary T, Aslam TM, Deary IJ, Dhillon B. Effect of axial length on retinal vascular network geometry. Am J Ophthalmol 2005; 140: 648-53.
177. Hu HH, Kuo TBJ, Wong WJ, Luk YO, Chern CM, Hsu LC, et al. Transfer function analysis of cerebral hemodynamics in patients with carotid stenosis. J Cereb Blood Flow Metab 1999; 19: 460-5.
178. Folstein MF, Folstein SE, McHugh PR. “Minimental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-98.
179. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140: 566-72.
180. Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke 2006; 37: 1583-633.
181. Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 1993; 114: 7-12.
182. Donahue SP, Wood JP, Patel BM, Quinn JV. Correlation of sonographic measurements of the internal jugular vein with central venous pressure. Am J Emerg Med 2009; 27: 851–5.
183. Bisaria KK. Anatomic variations of venous sinuses in the region of the torcular herophili. J Neurosurg 1985; 62: 90–5.
184. Hempel KJ, Elmohamed A. Anatomy, from variations and types of the intracranial venous system in man. Radiologe 1971; 11: 451–7.
185. Valdueza JM, Schreiber SJ, Roehl JE, Klingebiel R. Neurosonology and neuroimaging of stroke. New York: Thieme 2008.
186. Wei JY. Age and the cardiovascular system. N Engl J Med 1992; 327: 1735–9.
187. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 2009; 62: 205–17.
188. Brickman AM, Zahra A, Muraskin J, Steffener J, Holland CM, Habeck C, et al. Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Res 2009; 172: 117–20.
189. Marstrand JR, Garde E, Rostrup E, Ring P, Rosenbaum S, Mortensen EL, et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 2002; 33: 972–6.
190. Matsuda H, Maeda T, Yamada M, Gui LX, Tonami N, Hisada K. Age-matched normal values and topographic maps for regional cerebral blood flow measurements by Xe-133 inhalation. Stroke 1984; 15: 336–42.
191. Scheel P, Ruge C, Schoning M. Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol 2000; 26: 1261–6.
192. Muller HR, Hinn G, Buser MW. Internal jugular venous flow measurement by means of a duplex scanner. J Ultrasound Med 1990; 9: 261–5.
193. Hassan A, Tooke JE. Mechanism of the postural vasoconstrictor response in the human foot. Clin Sci 1988; 75: 379–97.
194. Henriksen O. Local nervous mechanism in regulation of blood flow in human subcutaneous tissue. Acta Physiol Scand 1976; 97:385–91.
195. Stewart JM. Pooling in chronic orthostatic intolerance arterial vasoconstrictive but not venous compliance defects. Circulation 2002; 105: 2274-81.
196. Mchedlisvili GI, Ormotsadze LG. Reflex influences from the venous sinuses on the regional cerebral arteries. Bull Exp Biol Med 1962; 53: 125-8.
197. Lobato EB, Sulek CA, Moody RL, Morey TE. Cross-sectional area of the right and left internal jugular veins. J Cardiothorac Vasc Anesth 1999;13:136-8.
198. Zeidman SM, Monsein LH, Arosarena O, Aletich V, Biafore JA, Dawson RC, et al. Reversibility of white matter changes and dementia after treatment of dural fistulas. AJNR Am J Neuroradiol 1995; 16: 1080-3.
199. Bederson JB. Papthophysiology and animal models of dural arteriovenous malformations. In: Awad IA, Barrow DL, editors. Dural arteriovenous malformations. USA: American Association of Neurological Surgeons; 1993. p.23-33.
200. Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 2007; 257: 62-6.
201. Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, Brown WR. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 2007; 66: 337-45.
202. Gao FQ, van Gaal S. L-CNRJSCBJBS. Does variable progression of incidental white matter hyperintensities in AD relate to venous insufficiency? Alzheimer’s and Dementia. 2008; 4 (suppl): T368-9.
203. Ikram MK, De Jong FJ, Van Dijk EJ, Prins ND, Hofman A, Breteler MM, et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain 2006; 129: 182-8.
204. Yassari R, Sayama T, Jahromi BS, Aihara Y, Stoodley M, Macdonald RL. Angiographic, hemodynamic and histological characterization of an arteriovenous fistula in rats. Acta Neurochir (Wien) 2004; 146: 495-504.
205. Terada T, Higashida RT, Halbach VV, Dowd CF, Hieshima GB. The effect of oestrogen on the development of arteriovenous fistulae induced by venous hypertension in rats. Acta Neurochir (Wien) 1998; 140: 82-6.
206. Terada T, Higashida RT, Halbach VV, Dowd CF, Tsuura M, Komai N, et al. Development of acquired arteriovenous fistulas in rats due to venous hypertension. J Neurosurg 1994; 80: 884-9.
207. Hai J, Ding M, Guo Z, Wang B. A new rat model of chronic cerebral hypoperfusion associated with arteriovenous malformations. J Neurosurg 2002; 97: 1198-1202.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top