跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 04:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃元德
研究生(外文):Huang, Yuan-Te
論文名稱:以負型光阻SU-8開發雙面多重部份曝光製程技術
論文名稱(外文):Development of the Double-side Multiple Partial Exposure Method with Negative Photoresist SU-8
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Hsu, Wensyang
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:61
中文關鍵詞:三維微結構封閉式雙面曝光部分曝光反射效應
外文關鍵詞:3D microstructureSU-8EmbeddedDouble-side exposurePartial expsoureReflection effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
近年來使用高分子材料與基本微影技術製作三維立體微結構的應用越來越多元化,其中以封閉微結構為熱門項目之一,此外也有研究指出負型光阻SU-8為高分子材料中被運用最廣泛的材料。因此本研究的目標是以負型光阻SU-8來開發雙面多重部份曝光製程技術,並以此技術製作具有多變化性截面的封閉微結構,而本製程方法只需要標準的黃光微影設備,單次地塗佈光阻和無須額外的接和過程。
在實驗參數上,正向部分曝光與背向部分曝光其曝光劑量與顯影厚度關係已完成建立,而在實驗中發現玻璃基板上的鉻金屬層會影響到正向部分曝光的顯影厚度,因此,我們提出一模擬模型來估算受到反射效應影響的部分曝光顯影厚度,並且利用兩種不同的負光阻微結構來討論曝光劑量與塗佈厚度對於顯影厚度的關係,其也可用來驗證模型的準確性,而不管是曝光劑量或塗佈厚度對於顯影厚度的關係,其實驗與模擬結果的誤差最大值為3.1 %,這證實我們的模組有很高的準確性。除此之外,我們也發現利用模具方式塗佈較高的光阻厚度,不僅可以降低反射效應於顯影厚度上的影響,且可以減輕因正向與背向部分曝光重疊的部分而產生的鍵結效應,而最終,具有非對稱截面的封閉微結構成功地被製作出,其驗證了我們完成以負型光阻SU-8進行雙面多重部份曝光製程技術的開發,使其成為經濟實惠的製程平台,將可用來構建三維微結構並應用於微機電系統中。

Here a double-side multiple partial exposure (DoMPE) method is proposed to fabricate an embedded SU-8 microstructure with more flexible inside cross section. The proposed method uses standard lithography equipment and needs only single-layer coating of negative photoresist SU-8 on glass substrate without bonding process.
Process parameters, including development thickness at different front and back-side partial exposure doses, are experimentally characterized. Reflection effect due to Cr layer on glass substrate is shown to have influence on the development depth of SU-8 in front partial exposure. Here, we propose a simulation model to predict SU-8 thickness after development under partial exposure with reflection effects. Two kinds of SU-8 micro structures with different exposure dosages and coated thickness are fabricated on glass substrates to demonstrate the capability of the proposed model. For different exposure dosages or coated SU-8 thickness, the maximum difference between simulated and experimental results is shown to be less than 3.1%, which verifies the accuracy of the proposed model. Furthermore, it is found that coating thicker SU-8 not only can reduce reflection effect, but also can attenuate cross-link effect due to exposure dose accumulation on SU-8 from both front and back sides. Finally, an embedded SU-8 microstructure is demonstrated to verify that the proposed DoMPE method needs only single-layer SU-8 coating to fabricate not just embedded microstructures, but also embedded microstructure with asymmetric inside cross section.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 負型光阻SU-8 2
1.2.2 封閉型負型光阻SU-8微結構之製程方法 3
1.2.2.1結合微影和接合 3
1.2.2.2多層堆疊 4
1.2.2.3傾斜曝光 6
1.2.2.4灰階光罩 7
1.2.2.5孔洞式 8
1.2.2.6移動式光罩 9
1.2.2.7文獻摘要整理 10
1.2.3 雙面多重部份曝光 10
1.3 研究目標與架構 11
第二章 正向多重部分曝光 13
2.1 製程概念與材料 13
2.2 實驗內容 14
2.2.1 曝光劑量與顯影厚度關係 14
2.2.2 以正向多重部分曝光製作橋狀結構 15
2.3 實驗結果 16
2.3.1 曝光劑量與顯影厚度關係 16
2.3.2 以正向多重部分曝光製作橋狀結構 17
第三章 背向多重部分曝光 19
3.1 製程概念與材料 19
3.2 實驗內容 20
3.2.1 曝光劑量與顯影厚度關係 20
3.2.2 鉻厚度與光穿透率關係 21
3.2.3 鉻厚度與顯影厚度關係 22
3.2.4 以背向多重部分曝光製作階梯狀結構 22
3.3 實驗結果 23
3.3.1 曝光劑量與顯影厚度關係 23
3.3.2 鉻厚度與光穿透率關係 24
3.3.3 鉻厚度與顯影厚度關係 25
3.3.4 以背向多重部分曝光製作階梯狀結構 26
第四章 雙面多重部分曝光下的反射效應 28
4.1 反射效應介紹 28
4.2 反射效應理論 30
4.3 反射效應驗證之實驗設計 33
4.3.1 長方體結構 34
4.3.2 橋狀結構 35
4.4 反射效應驗證之實驗結果 36
4.4.1 長方體結構 36
4.4.2 橋狀結構 39
第五章 運用雙面多重部分曝光製作具有非對稱截面的封閉微結構 46
5.1 製程流程 46
5.2 製程結果與討論 47
第六章 總結 51
6.1 研究結論 51
6.2 未來方向 52
參考文獻 54
論文著作 60
[1] N. Maluf, and K. Williams, Introduction to Microelectromechanical Systems Engineering: Artech House, 2004.
[2] J. Chung, and W. Hsu, “Fabrication of a polymer-based torsional vertical comb drive using a double-side partial exposure method,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, 035014, 2008.
[3] G. M. Rebeiz, RF MEMS: Theory, Design, and Technology: Wiley, 2004.
[4] Y. K. Yoon, J. W. Park, and M. G. Allen, “Polymer-core conductor approaches for RF MEMS,” Journal of Microelectromechanical Systems, vol. 14, no. 5, pp. 886-894, 2005.
[5] H. S. Ko, C. W. Liu, C. Gau, and D. Z. Jeng, “Flow characteristics in a microchannel system integrated with arrays of micro-pressure sensors using a polymer material,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, 2008.
[6] G. Urban, BioMEMS: Springer, 2007.
[7] H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2318-2322, 2006.
[8] J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sensors and Actuators B-Chemical, vol. 114, no. 1, pp. 542-551, 2006.
[9] B. G. Kim, J. H. Kim, and E. Yoon, “Formation of 3-dimensional microfluidic components using double-side exposed thick photoresist molds,” in 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, California, USA, 2003, pp. 627-630.
[10] E. Motamedi, MOEMS: Micro-opto-electro-mechanical Systems: SPIE Press, 2005.
[11] J. H. Lee, W. S. Choi, K. H. Lee, and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography,” Journal of Micromechanics and Microengineering, vol. 18, no. 12, pp. 7, 2008.
[12] H. Kwon, S. H. Kim, Y. Yee, J. M. Ha, S. C. Kim, K. C. Song, K. Y. Um, H. J. Nam, Y. C. Joo, and J. U. Bu, “Micro-optical fiber coupler on silicon bench based on microelectromechanical systems technology,” Japanese Journal of Applied Physics, vol. 46, no. 8, pp. 5473-5477, 2007.
[13] K. Y. Hung, and T. H. Liang, “Application of inclined-exposure and thick film process for high aspect-ratio micro-structures on polymer optic devices,” in Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008, pp. 1217-1222.
[14] R. Yang, W. J. Wang, and S. A. Soper, “Out-of-plane microlens array fabricated using ultraviolet lithography,” Applied Physics Letters, vol. 86, no. 16, 2005.
[15] C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 348-358, 2005.
[16] J. A. Lee, S. Lee, K. C. Lee, S. Il Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, pp. 10, 2008.
[17] I. H. Song, and P. K. Ajmera, “Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication,” Journal of Micromechanics and Microengineering, vol. 13, no. 6, pp. 816-821, 2003.
[18] C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu, and S. L. Chen, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots,” Sensors and Actuators a-Physical, vol. 102, no. 1-2, pp. 130-138, 2002.
[19] S. H. Son, Y. S. Park, and S. Y. Choi, “New Formation Technology of Plasma Display Panel Barrier-Rib Structure Using Silicone Rubber Mold Transferred from SU-8 Master Structure,” Japanese Journal of Applied Physics, vol. 41, no. 6R, pp. 4022, 2002.
[20] K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” Journal of Vacuum Science &; Technology B, vol. 13, no. 6, pp. 3012-3016, 1995.
[21] H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectronic Engineering, vol. 41–42, pp. 371-374, 1998.
[22] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol. 7, no. 3, pp. 121-124, 1997.
[23] H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: physical, vol. 64, no. 1, pp. 33-39, 1998.
[24] A. del Campo, and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” Journal of Micromechanics and Microengineering, vol. 17, no. 6, pp. R81-R95, 2007.
[25] P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis, vol. 28, no. 24, pp. 4539-4551, 2007.
[26] R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” Journal of Micromechanics and Microengineering, vol. 11, no. 3, pp. 263-269, 2001.
[27] C. H. Lin, G. B. Lee, B. W. Chang, and G. L. Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist,” Journal of Micromechanics and Microengineering, vol. 12, no. 5, pp. 590-597, 2002.
[28] F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 1047-1056, 2004.
[29] L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud, “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic,” in Transducers 97 - 1997 International Conference on Solid-State Sensors and Actuators, Digest of Technical Papers, Vols 1 and 2, New York, 1997, pp. 1419-1422.
[30] Y. J. Chuang, F. G. Tseng, J. H. Cheng, and W. K. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sensors and Actuators a-Physical, vol. 103, no. 1-2, pp. 64-69, 2003.
[31] P. Yao, G. J. Schneider, and D. W. Prather, “Three-dimensional lithographical fabrication of microchannels,” Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 799-805, 2005.
[32] A. Gracias, X. J. Feng, B. Xu, and J. Castracane, “Novel microfabrication approach of embedded SU8 (TM) fluidic networks for cell transport on chips,” Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 2, 021102, 2006.
[33] M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sensors and Actuators a-Physical, vol. 111, no. 1, pp. 14-20, 2004.
[34] T. Suzuki, T. Tokuda, H. Yamamoto, M. Ohoka, I. Kanno, M. Washizu, and H. Kotera, “Rapid Fabrication Process for High Aspect-Ratio Embedded Microchannels with Orifices Usinga Single SU-8 Layer Onamask,” in 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006, pp. 346-349.
[35] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe, and W. Pilz, “Microfabrication of complex surface topographies using grey-tone lithography,” Sensors and Actuators a-Physical, vol. 46, no. 1-3, pp. 89-94, 1995.
[36] J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” in Microfluidics, BioMEMS, and Medical Microsystems V, 2007, pp. N4650-N4650.
[37] S. Macken, and D. Filippini, “Monolithic SU-8 microcavities for efficient fluorescence collection,” Journal of Micromechanics and Microengineering, vol. 19, no. 8, 2009.
[38] Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” Journal of Micromechanics and Microengineering, vol. 17, no. 2, pp. 199-206, 2007.
[39] Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, “Embedded Microstructure Fabrication Using Developer-Permeability of Semi-Cross-Linked Negative Resist,” Journal of Microelectromechanical Systems, vol. 19, no. 5, pp. 1058-1069, 2010.
[40] J. Chung, and W. Hsu, “Enhancement on forming complex three dimensional microstructures by a double-side multiple partial exposure method,” Journal of Vacuum Science &; Technology B, vol. 25, no. 5, pp. 1671-1678, 2007.
[41] J. Zhu, X. Zhao, and Z. Ni, “High-aspect-ratio microstructure fabrication using SU-8 resist,” in Conference on Micromachining and Microfabrication Process Technology VI, 2000, pp. 86-89.
[42] Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsystem Technologies, vol. 8, no. 4-5, pp. 308-313, 2002.
[43] R. Yang, and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sensors and Actuators B-Chemical, vol. 110, no. 2, pp. 279-288, 2005.
[44] W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” Journal of Micromechanics and Microengineering, vol. 16, no. 4, pp. 821-831, 2006.
[45] M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light: Cambridge University Press, 1999.
[46] E. Hecht, Optics: Addison-Wesley, 2002.
[47] M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Applied Physics Letters, vol. 88, no. 2, 2006.
[48] "http://microchem.com/pdf/SU-82000DataSheet2025thru2075Ver4.pdf."
[49] "http://refractiveindex.info/?group=METALS&;material=Chromium."
[50] J. Zhang, M. B. Chan-Park, and S. R. Conner, “Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8,” Lab on a Chip, vol. 4, no. 6, pp. 646-653, 2004.
[51] Z. F. Zhou, Q. A. Huang, W. H. Li, M. Feng, W. Lu, and Z. Zhu, “Improvement of the 2D dynamic CA method for photoresist etching simulation and its application to deep UV lithography simulations of SU-8 photoresists,” Journal of Micromechanics and Microengineering, vol. 17, no. 12, pp. 2538-2547, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top