|
[1] N. Maluf, and K. Williams, Introduction to Microelectromechanical Systems Engineering: Artech House, 2004. [2] J. Chung, and W. Hsu, “Fabrication of a polymer-based torsional vertical comb drive using a double-side partial exposure method,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, 035014, 2008. [3] G. M. Rebeiz, RF MEMS: Theory, Design, and Technology: Wiley, 2004. [4] Y. K. Yoon, J. W. Park, and M. G. Allen, “Polymer-core conductor approaches for RF MEMS,” Journal of Microelectromechanical Systems, vol. 14, no. 5, pp. 886-894, 2005. [5] H. S. Ko, C. W. Liu, C. Gau, and D. Z. Jeng, “Flow characteristics in a microchannel system integrated with arrays of micro-pressure sensors using a polymer material,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, 2008. [6] G. Urban, BioMEMS: Springer, 2007. [7] H. Sato, H. Matsumura, S. Keino, and S. Shoji, “An all SU-8 microfluidic chip with built-in 3D fine microstructures,” Journal of Micromechanics and Microengineering, vol. 16, no. 11, pp. 2318-2322, 2006. [8] J. M. Ruano-Lopez, M. Aguirregabiria, M. Tijero, M. T. Arroyo, J. Elizalde, J. Berganzo, I. Aranburu, F. J. Blanco, and K. Mayora, “A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip,” Sensors and Actuators B-Chemical, vol. 114, no. 1, pp. 542-551, 2006. [9] B. G. Kim, J. H. Kim, and E. Yoon, “Formation of 3-dimensional microfluidic components using double-side exposed thick photoresist molds,” in 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, Squaw Valley, California, USA, 2003, pp. 627-630. [10] E. Motamedi, MOEMS: Micro-opto-electro-mechanical Systems: SPIE Press, 2005. [11] J. H. Lee, W. S. Choi, K. H. Lee, and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography,” Journal of Micromechanics and Microengineering, vol. 18, no. 12, pp. 7, 2008. [12] H. Kwon, S. H. Kim, Y. Yee, J. M. Ha, S. C. Kim, K. C. Song, K. Y. Um, H. J. Nam, Y. C. Joo, and J. U. Bu, “Micro-optical fiber coupler on silicon bench based on microelectromechanical systems technology,” Japanese Journal of Applied Physics, vol. 46, no. 8, pp. 5473-5477, 2007. [13] K. Y. Hung, and T. H. Liang, “Application of inclined-exposure and thick film process for high aspect-ratio micro-structures on polymer optic devices,” in Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008, pp. 1217-1222. [14] R. Yang, W. J. Wang, and S. A. Soper, “Out-of-plane microlens array fabricated using ultraviolet lithography,” Applied Physics Letters, vol. 86, no. 16, 2005. [15] C. L. Wang, G. Y. Jia, L. H. Taherabadi, and M. J. Madou, “A novel method for the fabrication of high-aspect ratio C-MEMS structures,” Journal of Microelectromechanical Systems, vol. 14, no. 2, pp. 348-358, 2005. [16] J. A. Lee, S. Lee, K. C. Lee, S. Il Park, and S. S. Lee, “Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis,” Journal of Micromechanics and Microengineering, vol. 18, no. 3, pp. 10, 2008. [17] I. H. Song, and P. K. Ajmera, “Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication,” Journal of Micromechanics and Microengineering, vol. 13, no. 6, pp. 816-821, 2003. [18] C. H. Ho, K. P. Chin, C. R. Yang, H. M. Wu, and S. L. Chen, “Ultrathick SU-8 mold formation and removal, and its application to the fabrication of LIGA-like micromotors with embedded roots,” Sensors and Actuators a-Physical, vol. 102, no. 1-2, pp. 130-138, 2002. [19] S. H. Son, Y. S. Park, and S. Y. Choi, “New Formation Technology of Plasma Display Panel Barrier-Rib Structure Using Silicone Rubber Mold Transferred from SU-8 Master Structure,” Japanese Journal of Applied Physics, vol. 41, no. 6R, pp. 4022, 2002. [20] K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” Journal of Vacuum Science &; Technology B, vol. 13, no. 6, pp. 3012-3016, 1995. [21] H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectronic Engineering, vol. 41–42, pp. 371-374, 1998. [22] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol. 7, no. 3, pp. 121-124, 1997. [23] H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: physical, vol. 64, no. 1, pp. 33-39, 1998. [24] A. del Campo, and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” Journal of Micromechanics and Microengineering, vol. 17, no. 6, pp. R81-R95, 2007. [25] P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as a structural material for labs-on-chips and microelectromechanical systems,” Electrophoresis, vol. 28, no. 24, pp. 4539-4551, 2007. [26] R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” Journal of Micromechanics and Microengineering, vol. 11, no. 3, pp. 263-269, 2001. [27] C. H. Lin, G. B. Lee, B. W. Chang, and G. L. Chang, “A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist,” Journal of Micromechanics and Microengineering, vol. 12, no. 5, pp. 590-597, 2002. [28] F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. Mayora, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 1047-1056, 2004. [29] L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud, “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic,” in Transducers 97 - 1997 International Conference on Solid-State Sensors and Actuators, Digest of Technical Papers, Vols 1 and 2, New York, 1997, pp. 1419-1422. [30] Y. J. Chuang, F. G. Tseng, J. H. Cheng, and W. K. Lin, “A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists,” Sensors and Actuators a-Physical, vol. 103, no. 1-2, pp. 64-69, 2003. [31] P. Yao, G. J. Schneider, and D. W. Prather, “Three-dimensional lithographical fabrication of microchannels,” Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 799-805, 2005. [32] A. Gracias, X. J. Feng, B. Xu, and J. Castracane, “Novel microfabrication approach of embedded SU8 (TM) fluidic networks for cell transport on chips,” Journal of Microlithography Microfabrication and Microsystems, vol. 5, no. 2, 021102, 2006. [33] M. Han, W. Lee, S. K. Lee, and S. S. Lee, “3D microfabrication with inclined/rotated UV lithography,” Sensors and Actuators a-Physical, vol. 111, no. 1, pp. 14-20, 2004. [34] T. Suzuki, T. Tokuda, H. Yamamoto, M. Ohoka, I. Kanno, M. Washizu, and H. Kotera, “Rapid Fabrication Process for High Aspect-Ratio Embedded Microchannels with Orifices Usinga Single SU-8 Layer Onamask,” in 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006, pp. 346-349. [35] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe, and W. Pilz, “Microfabrication of complex surface topographies using grey-tone lithography,” Sensors and Actuators a-Physical, vol. 46, no. 1-3, pp. 89-94, 1995. [36] J. M. Dykes, D. K. Poon, J. Wang, D. Sameoto, J. T. K. Tsui, C. Choo, G. H. Chapman, A. M. Parameswaren, and B. L. Gray, “Creation of embedded structures in SU-8,” in Microfluidics, BioMEMS, and Medical Microsystems V, 2007, pp. N4650-N4650. [37] S. Macken, and D. Filippini, “Monolithic SU-8 microcavities for efficient fluorescence collection,” Journal of Micromechanics and Microengineering, vol. 19, no. 8, 2009. [38] Y. Hirai, Y. Inamoto, K. Sugano, T. Tsuchiya, and O. Tabata, “Moving mask UV lithography for three-dimensional structuring,” Journal of Micromechanics and Microengineering, vol. 17, no. 2, pp. 199-206, 2007. [39] Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, “Embedded Microstructure Fabrication Using Developer-Permeability of Semi-Cross-Linked Negative Resist,” Journal of Microelectromechanical Systems, vol. 19, no. 5, pp. 1058-1069, 2010. [40] J. Chung, and W. Hsu, “Enhancement on forming complex three dimensional microstructures by a double-side multiple partial exposure method,” Journal of Vacuum Science &; Technology B, vol. 25, no. 5, pp. 1671-1678, 2007. [41] J. Zhu, X. Zhao, and Z. Ni, “High-aspect-ratio microstructure fabrication using SU-8 resist,” in Conference on Micromachining and Microfabrication Process Technology VI, 2000, pp. 86-89. [42] Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsystem Technologies, vol. 8, no. 4-5, pp. 308-313, 2002. [43] R. Yang, and W. J. Wang, “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sensors and Actuators B-Chemical, vol. 110, no. 2, pp. 279-288, 2005. [44] W. J. Kang, E. Rabe, S. Kopetz, and A. Neyer, “Novel exposure methods based on reflection and refraction effects in the field of SU-8 lithography,” Journal of Micromechanics and Microengineering, vol. 16, no. 4, pp. 821-831, 2006. [45] M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light: Cambridge University Press, 1999. [46] E. Hecht, Optics: Addison-Wesley, 2002. [47] M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, “Variation of absorption coefficient and determination of critical dose of SU-8 at 365 nm,” Applied Physics Letters, vol. 88, no. 2, 2006. [48] "http://microchem.com/pdf/SU-82000DataSheet2025thru2075Ver4.pdf." [49] "http://refractiveindex.info/?group=METALS&;material=Chromium." [50] J. Zhang, M. B. Chan-Park, and S. R. Conner, “Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8,” Lab on a Chip, vol. 4, no. 6, pp. 646-653, 2004. [51] Z. F. Zhou, Q. A. Huang, W. H. Li, M. Feng, W. Lu, and Z. Zhu, “Improvement of the 2D dynamic CA method for photoresist etching simulation and its application to deep UV lithography simulations of SU-8 photoresists,” Journal of Micromechanics and Microengineering, vol. 17, no. 12, pp. 2538-2547, 2007.
|