Abd, A. A., Naji, S. Z., and Hashim, A. S. (2020) Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline. Journal of Natural Gas Science and Engineering 76: 103218.
Adenle, A. A. (2020) Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy 137: 111180.
Ahmad, R., and Sardar, M. (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry 4: 1.
Ali, M. E., Das, R., Maamor, A., and Hamid, S. B. A. (2014) Multifunctional carbon nanotubes (CNTs): a new dimension in environmental remediation. Trans Tech Publ
Argun, H., Kargi, F., Kapdan, I. K., and Oztekin, R. (2008) Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 33: 1813-1819.
Aryal, S. (2018) Endospore Staining- Principle, Reagents, Procedure and Result.
Aslam, M., Ahmad, R., Yasin, M., Khan, A. L., Shahid, M. K., Hossain, S., Khan, Z., Jamil, F., Rafiq, S., Bilad, M. R., Kim, J., and Kumar, G. (2018) Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. Bioresource Technology 269: 452-464.
Bakonyi, P., Nemestóthy, N., Simon, V., and Bélafi-Bakó, K. (2014) Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renewable and Sustainable Energy Reviews 40: 806-813.
Beckers, L., Hiligsmann, S., Lambert, S. D., Heinrichs, B., and Thonart, P. (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresource Technology 133: 109-117.
Boshagh, F., Rostami, K., and Moazami, N. (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. International Journal of Hydrogen Energy 44: 14395-14405.
Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., Montoya, L., and Razo-Flores, E. (2014) Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics. International Journal of Hydrogen Energy 39: 11423-11432.
Chen, Y., Cheng, J. J., and Creamer, K. S. (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technology 99: 4044-4064.
Ciranna, A., Ferrari, R., Santala, V., and Karp, M. (2014) Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses. International Journal of Hydrogen Energy 39: 6391-6401.
Costoya, X., deCastro, M., Carvalho, D., and Gómez-Gesteira, M. (2020) On the suitability of offshore wind energy resource in the United States of America for the 21st century. Applied Energy 262: 114537.
da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., and da Silva César, A. (2017) Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy 42: 2018-2033.
Dawood, F., Anda, M., and Shafiullah, G. M. (2020) Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45: 3847-3869.
Eker, S., and Sarp, M. (2017) Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy 42: 2562-2568.
Elbeshbishy, E., Dhar, B. R., Nakhla, G., and Lee, H.-S. (2017) A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews 79: 656-668.
Fonseca, B. C., Guazzaroni, M.-E., and Reginatto, V. (2016) Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. International Journal of Hydrogen Energy 41: 21109-21120.
Gadhe, A., Sonawane, S. S., and Varma, M. N. (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy 40: 4502-4511.
Hafez, H., Nakhla, G., El. Naggar, M. H., Elbeshbishy, E., and Baghchehsaraee, B. (2010) Effect of organic loading on a novel hydrogen bioreactor. International Journal of Hydrogen Energy 35: 81-92.
Hwang, J.-H., Choi, J.-A., Oh, Y.-K., Abou-Shanab, R. A. I., Song, H., Min, B., Cho, Y., Na, J.-G., Koo, J., and Jeon, B.-H. (2011) Hydrogen production from sulfate- and ferrous-enriched wastewater. International Journal of Hydrogen Energy 36: 13984-13990.
Kasap, Y., Şensöğüt, C., and Ören, Ö. (2020) Efficiency change of coal used for energy production in Turkey. Resources Policy 65: 101577.
Kihara, T., Liu, X.-Y., Nakamura, C., Park, K.-M., Han, S.-W., Qian, D.-J., Kawasaki, K., Zorin, N. A., Yasuda, S., Hata, K., Wakayama, T., and Miyake, J. (2011) Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest. International Journal of Hydrogen Energy 36: 7523-7529.
Kim, S.-H., Han, S.-K., and Shin, H.-S. (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry 41: 199-207.
Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U., Moro, A., Muntean, S., Novara, D., Pérez-Díaz, J. I., Quaranta, E., Schild, P., and Theodossiou, N. (2019) Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews 113: 109257.
Kumar, G., Mathimani, T., Rene, E. R., and Pugazhendhi, A. (2019) Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy 44: 13106-13113.
Laurinavichene, T., and Tsygankov, A. (2016) Different types of H2 photoproduction by starch-utilizing co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 41: 13419-13425.
Lay, C.-H., Sen, B., Cheng, Y.-c., Chen, C.-C., and Lin, C.-Y. (2012) Effect of pH switch operation on anaerobic hydrogen production. Sustainable Environment Research 22: 335-342.
Le, D. T. H., and Nitisoravut, R. (2015) Modified hydrotalcites for enhancement of biohydrogen production. International Journal of Hydrogen Energy 40: 12169-12176.
Lee, K. S., Wu, J. F., Lo, Y. S., Lo, Y. C., Lin, P. J., and Chang, J. S. (2004) Anaerobic hydrogen production with an efficient carrier‐induced granular sludge bed bioreactor. Biotechnology and Bioengineering 87: 648-657.
Lens, P., Dijkema, C., and Stams, A. (1998) 13 C-NMR Study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation 9: 179-186.
Lin, C. Y., and Lay, C. H. (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29: 41-45.
Liu, G.-X., Wu, M., Jia, F.-R., Yue, Q., and Wang, H.-M. (2019) Material flow analysis and spatial pattern analysis of petroleum products consumption and petroleum-related CO2 emissions in China during 1995–2017. Journal of Cleaner Production 209: 40-52.
Liu, G., and Shen, J. (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering 98: 251-256.
Liu, I. C., Whang, L.-M., Ren, W.-J., and Lin, P.-Y. (2011a) The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. International Journal of Hydrogen Energy 36: 439-449.
Liu, X.-W., Sun, X.-F., Huang, Y.-X., Sheng, G.-P., Wang, S.-G., and Yu, H.-Q. (2011b) Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy & Environmental Science 4: 1422-1427.
Liu, Z., Lv, F., Zheng, H., Zhang, C., Wei, F., and Xing, X.-H. (2012) Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy 37: 10619-10626.
Lo, Y.-C., Chen, W.-M., Hung, C.-H., Chen, S.-D., and Chang, J.-S. (2008) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research 42: 827-842.
McKinlay, J. B., and Harwood, C. S. (2010) Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 21: 244-251.
Mohanraj, S., Anbalagan, K., Kodhaiyolii, S., and Pugalenthi, V. (2014a) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. Journal of Biotechnology 192: 87-95.
Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., and Pugalenthi, V. (2014b) Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: Evaluation and comparison of the effects. International Journal of Hydrogen Energy 39: 11920-11929.
Morgan, J. W., Evison, L. M., and Forster, C. F. (1991) Changes to the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up. Water Research 25: 639-653.
Mostafa, A., Tolba, A., Gar Alalm, M., Fujii, M., Afify, H., and Elsamadony, M. (2020) Application of magnetic multi-wall carbon nanotube composite into fermentative treatment process of ultrasonicated waste activated sludge. Bioresource Technology 306: 123186.
Nicoletti, G., Arcuri, N., Nicoletti, G., and Bruno, R. (2015) A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion and Management 89: 205-213.
Nikolaidis, P., and Poullikkas, A. (2017) A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67: 597-611.
Oh, Y.-K., Raj, S. M., Jung, G. Y., and Park, S. (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology 102: 8357-8367.
Olabi, A. G., Mahmoud, M., Soudan, B., Wilberforce, T., and Ramadan, M. (2020) Geothermal based hybrid energy systems, toward eco-friendly energy approaches. Renewable Energy 147: 2003-2012.
Oztekin, R., Kapdan, I. K., Kargi, F., and Argun, H. (2008) Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. International Journal of Hydrogen Energy 33: 4083-4090.
Park, J.-H., Kim, D.-H., Kim, H.-S., Wells, G. F., and Park, H.-D. (2019) Granular activated carbon supplementation alters the metabolic flux of Clostridium butyricum for enhanced biohydrogen production. Bioresource Technology 281: 318-325.
Patel, S. K., Lee, J.-K., and Kalia, V. C. (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian journal of microbiology 58: 529-530.
Pugazhendhi, A., Shobana, S., Nguyen, D. D., Banu, J. R., Sivagurunathan, P., Chang, S. W., Ponnusamy, V. K., and Kumar, G. (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. International Journal of Hydrogen Energy 44: 1431-1440.
Rajesh Banu, J., Kavitha, S., Yukesh Kannah, R., Bhosale, R. R., and Kumar, G. (2020) Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route. Bioresource Technology 298: 122378.
Saady, N. M. C. (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. International Journal of Hydrogen Energy 38: 13172-13191.
Salerno, M. B., Park, W., Zuo, Y., and Logan, B. E. (2006) Inhibition of biohydrogen production by ammonia. Water Research 40: 1167-1172.
Saqib, A. A. N., and Whitney, P. J. (2011) Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy 35: 4748-4750.
Sekoai, P. T., Ouma, C. N. M., du Preez, S. P., Modisha, P., Engelbrecht, N., Bessarabov, D. G., and Ghimire, A. (2019) Application of nanoparticles in biofuels: An overview. Fuel 237: 380-397.
Shafiee, S., and Topal, E. (2009) When will fossil fuel reserves be diminished? Energy Policy 37: 181-189.
Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L., and Pugazhendhi, A. (2020) Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 270: 117453.
Shen, L., Zhou, Y., Mahendran, B., Bagley, D. M., and Liss, S. N. (2010) Membrane fouling in a fermentative hydrogen producing membrane bioreactor at different organic loading rates. Journal of Membrane Science 360: 226-233.
Show, K.-Y., Lee, D.-J., and Chang, J.-S. (2011) Bioreactor and process design for biohydrogen production. Bioresource Technology 102: 8524-8533.
Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., and Chang, J. S. (2012) Biohydrogen production: Current perspectives and the way forward. International Journal of Hydrogen Energy 37: 15616-15631.
Singh, P., and Singh, N. (2019) Political economy of bioenergy transitions in developing countries: A case study of Punjab, India. World Development 124: 104630.
Sinha, P., and Pandey, A. (2011) An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy 36: 7460-7478.
Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W., and Mishra, P. K. (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology 238: 552-558.
Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., Shukla, P., Dubey, K. K., and Mishra, P. K. (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances 37: 107384.
Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., Singh, R., and Ramteke, P. W. (2020) Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology: 123094.
Van Ginkel, S. W., and Logan, B. (2005) Increased biological hydrogen production with reduced organic loading. Water Research 39: 3819-3826.
Vaňáčová, Š., Rasoloson, D., Rázga, J., Hrdý, I., Kulda, J., and Tachezy, J. (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147: 53-62.
Wang, B., Wan, W., and Wang, J. (2009) Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresource Technology 100: 1211-1213.
Wang, J. (2005) Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 17: 7-14.
Wang, J., and Wan, W. (2008) Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33: 1215-1220.
Wang, J., and Wan, W. (2009) Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34: 799-811.
Wang, X. J., Ren, N. Q., Sheng Xiang, W., and Qian Guo, W. (2007) Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. International Journal of Hydrogen Energy 32: 748-754.
Wang, Y.-Z., Liao, Q., Zhu, X., Tian, X., and Zhang, C. (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresource Technology 101: 4034-4041.
Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., and Cui, Y. (2011) Three-dimensional carbon nanotube− textile anode for high-performance microbial fuel cells. Nano letters 11: 291-296.
Yang, G., and Wang, J. (2018) Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresource Technology 266: 413-420.
Yang, W.-W., and Ponce, A. (2011) Validation of a Clostridium Endospore Viability Assay and Analysis of Greenland Ices and Atacama Desert Soils. Applied and environmental microbiology 77: 2352-2358.
Yang, X., Liu, N., Zhang, P., Guo, Z., Ma, C., Hu, P., and Zhang, X. (2019) The current state of marine renewable energy policy in China. Marine Policy 100: 334-341.
Zhou, P., Elbeshbishy, E., and Nakhla, G. (2013) Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresource Technology 130: 710-718.
謝秉衡 (2017) 以額外添加不同奈米金屬對厭氧醱酵產氫影響之研究。. 博士論文,國立中興大學。.鄭宥慈 (2018) 共同固定奈米金屬及 C.pasteurianum之暗醱酵產氫可行性研究. 碩士論文,國立中興大學。.鄭景鴻 (2012) 暗醱酵產氫系統指標微生物組成及功能鑑定分析。. 博士論文,國立中興大學。.