跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張佩暄
研究生(外文):Pei-Hsuan Chang
論文名稱:探討添加奈米碳管(MWCNT-COOH)對Clostridium pasteurianum暗醱酵產氫之可行性
論文名稱(外文):Explore the feasibility of Multi-walled carbon nanotubes additions for Clostridium pasteurianum in dark fermentation
指導教授:洪俊雄洪俊雄引用關係
指導教授(外文):Chun-Hsiung Hung
口試委員:張育傑張怡塘
口試日期:2020-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:67
中文關鍵詞:生物產氫暗醱酵多壁奈米碳管Clostridium pasteurianum
外文關鍵詞:BiohydrogenDark fermentationMulti-walled carbon nanotubes (MWCNT)Clostridium pasteurianum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
生物產氫是微生物分解有機物的過程中產生氫氣的代謝途徑,包含生物光解、光醱酵及暗醱酵,其中以暗醱酵產氫最具發展效益,於厭氧環境進行糖解發酵等代謝產生氫氣與二氧化碳,過程中也會產生具有價值的醇類與揮發性有機酸。然而,生物產氫受限於微生物作用故近期學者開始研究添加奈米材料以提升微生物產氫效率。奈米碳管(carbon nanotube, CNT)是種特殊的碳材料,具有高比表面積、良好導電性及對機械、化學與熱抗性高等特性,故有作為生物催化的潛能。

Clostridium pasteurianum是暗醱酵菌中常見的研究菌種,為革蘭氏陽性短桿狀菌,生長為絕對厭氧的環境下且會產生內生胞子。本研究選用Clostridium pasteurianum(CH5)純菌株,與經修飾改良的多壁奈米碳管(MWCNT-COOH)進行共培養暗醱酵產氫研究。分別添加不同濃度0、200、600、800、1000 mg/L之MWCNT-COOH與CH5進行共培養,分析生物累積產氣量、氣體組成比、Volatile Fatty Acids(VFAs)、葡萄糖利用率等,找尋最佳的共培養添加濃度。並經由胞子染色法觀察,其CH5於不同環境濃度中之胞子產生情形,再依最佳濃度進行分生檢測、產氫酵素活性分析,最後探討當將MWCNT-COOH與CH5進行共固定化顆粒的可行性。

從實驗結果得知,添加濃度為1000 mg/L可得到最大生物產氣量175.4 mL,且高於控制組8%。最高氫氣產量則為添加200與1000 mg/L時約為66 mL。產氫量(Hydrogen production yield, HPY)的表現也以添加200與1000 mg/L時表現較佳分別為 1.06與1.07 mol H2/mol glucose。而添加200 mg/L時,其產氫率(Hydrogen production rate, HPR)是當中最大值0.92 H2 L/L/day。此外,添加MWCNT-COOH能促使CH5之代謝途徑趨向乙酸發展,且其對CH5的作用為可以提升產氫代謝的電子傳遞速率。故添加MWCNT-COOH於CH5中能提升其產氫表現。
Biohydrogen could be produced by microbial decomposition of organic matter. These metabolic processes include biophotolysis, photofermentation and dark fermentation. Under anerobic conditions, slected bacteria can convert glycolysis to hydrogen and carbon dioxide through dark fermentation, and even produce valuable alcohols and volatile organic acids, which have development potential. However, the efficiency of biohydrogen production is limited due to limited operation condition. Some researchers have successfully improved hydrogen production efficiency by adding nanoparticles to grow/stimulate with microorganism. Carbon nanotube (CNT) as unique form of carbon material has potential for biocatalysts, such as good electrical conductivity, high surface area, and high resistance of mechanical, thermal, and chemical.

In this study, it is desirable to investigate the hydrogen production by co-culture of Clostridium pasteurianum (CH5) and multi-walled carbon nanotubes with carboxylic acid groups (MWCNT-COOH). The effect of different MWCNT-COOH concentrations (0, 200, 600, 800 and 1000 mg/L) on hydrogen production is investigated. Analyzing accumulative biogas production, biogas composition, Volatile Fatty Acids (VFAs), and glucose utilization were conducted to find out the best operation concentration. Also, endospore stain as well as activity of enzyme performance were tested to reveal the effect of nanotube on the growth of CH5.

The results showed that maximum total biogas production of 175.4 mL can be obtained when adding 1000 mg/L of MWCNT-COOH. Adding the MWCNT-COOH of 200 and 1000 mg/L would obtain maximum hydrogen gas production of about 66 mL, and also have the better hydrogen production yield (HPY),1.06 and1.07 mol H2/mol glucose, respectively. Then, when adding the MWCNT-COOH of 200 mg/L have the maximum hydrogen production rate (HPR) 0.92 H2 L/L/day.

In addition, addition of MWCNT-COOH can promote the metabolic pathway to produce acetic acid, and it even can increase the electron transfer rate for hydrogen production. Therefore, the addition of MWCNT-COOH to CH5 can improve its hydrogen production performance.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
第一節 研究緣起 1
第二節 研究目的 2
第二章 文獻回顧 3
第一節 能源現況與發展 3
一、 非再生能源(Non- Renewable Energy Source, NRES) 4
二、 再生能源(Renewable Energy Source, RES) 5
第二節 生物產氫 7
一、 生物光解(Biophotolysis) 7
二、 光醱酵(Photofermentation) 8
三、 暗醱酵(Dark fermentation) 9
第三節 Clostridium sp.產氫機制 10
第四節 暗醱酵產氫影響因子 12
一、 基質 12
二、 pH值 12
三、 副產物 12
四、 溫度 13
五、 營養源(氮、磷、硫) 13
六、 金屬離子 14
第五節 奈米材料對生物產氫的影響 15
一、 無機奈米材料對暗醱酵產氫影響 15
二、 有機奈米材料對暗醱酵產氫影響 16
第六節 文獻閱讀心得 18
第三章 材料與方法 19
第一節 實驗架構 19
第二節 實驗設備 20
第三節 實驗方法 21
一、 菌種來源與培養條件 21
二、 奈米碳管添加 22
三、 固定化顆粒製備 23
第四節 分析方法 24
一、 累積生物產氣量檢測 24
二、 生物氣體組成比分析 24
三、 酸鹼值(pH)檢測 25
四、 揮發性有機酸分析 25
五、 葡萄糖利用率分析 27
六、 總有機碳分析 28
第五節 分子生物技術 29
一、 DNA萃取 29
二、 RNA萃取 30
三、 產氫酵素基因表現 31
第六節 顯微鏡觀察 32
一、 內胞子染色法(endospore stain) 32
第四章 結果與討論 33
第一節 添加不同濃度之奈米碳管對CH5產氫影響 33
第二節 添加不同濃度奈米碳管之內胞子染色觀察 40
一、 控制組 40
二、 添加200 mg/L之奈米碳管 41
三、 添加600 mg/L之奈米碳管 42
四、 添加800 mg/L之奈米碳管 43
五、 添加1000 mg/L之奈米碳管 44
六、 綜合討論 45
第三節 奈米碳管添加對CH5之基因與活性酵素表現 46
一、 DNA與RNA濃度比 46
二、 qPCR檢測 48
三、 綜合討論 49
第四節 共固定奈米碳管與CH5之可行性 50
一、 共固定化培養CH5與MWCNT-COOH 50
二、 懸浮與固定化產氫表現比較 53
第五章 結論與建議 55
第一節 結論 55
第二節 建議 57
第六章 參考文獻 58
Abd, A. A., Naji, S. Z., and Hashim, A. S. (2020) Effects of non-hydrocarbons impurities on the typical natural gas mixture flows through a pipeline. Journal of Natural Gas Science and Engineering 76: 103218.

Adenle, A. A. (2020) Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy 137: 111180.

Ahmad, R., and Sardar, M. (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry 4: 1.

Ali, M. E., Das, R., Maamor, A., and Hamid, S. B. A. (2014) Multifunctional carbon nanotubes (CNTs): a new dimension in environmental remediation. Trans Tech Publ
Argun, H., Kargi, F., Kapdan, I. K., and Oztekin, R. (2008) Biohydrogen production by dark fermentation of wheat powder solution: Effects of C/N and C/P ratio on hydrogen yield and formation rate. International Journal of Hydrogen Energy 33: 1813-1819.

Aryal, S. (2018) Endospore Staining- Principle, Reagents, Procedure and Result.

Aslam, M., Ahmad, R., Yasin, M., Khan, A. L., Shahid, M. K., Hossain, S., Khan, Z., Jamil, F., Rafiq, S., Bilad, M. R., Kim, J., and Kumar, G. (2018) Anaerobic membrane bioreactors for biohydrogen production: Recent developments, challenges and perspectives. Bioresource Technology 269: 452-464.

Bakonyi, P., Nemestóthy, N., Simon, V., and Bélafi-Bakó, K. (2014) Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renewable and Sustainable Energy Reviews 40: 806-813.

Beckers, L., Hiligsmann, S., Lambert, S. D., Heinrichs, B., and Thonart, P. (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresource Technology 133: 109-117.

Boshagh, F., Rostami, K., and Moazami, N. (2019) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. International Journal of Hydrogen Energy 44: 14395-14405.

Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., Montoya, L., and Razo-Flores, E. (2014) Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics. International Journal of Hydrogen Energy 39: 11423-11432.

Chen, Y., Cheng, J. J., and Creamer, K. S. (2008) Inhibition of anaerobic digestion process: A review. Bioresource Technology 99: 4044-4064.

Ciranna, A., Ferrari, R., Santala, V., and Karp, M. (2014) Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses. International Journal of Hydrogen Energy 39: 6391-6401.

Costoya, X., deCastro, M., Carvalho, D., and Gómez-Gesteira, M. (2020) On the suitability of offshore wind energy resource in the United States of America for the 21st century. Applied Energy 262: 114537.

da Silva Veras, T., Mozer, T. S., da Costa Rubim Messeder dos Santos, D., and da Silva César, A. (2017) Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy 42: 2018-2033.

Dawood, F., Anda, M., and Shafiullah, G. M. (2020) Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45: 3847-3869.

Eker, S., and Sarp, M. (2017) Hydrogen gas production from waste paper by dark fermentation: Effects of initial substrate and biomass concentrations. International Journal of Hydrogen Energy 42: 2562-2568.

Elbeshbishy, E., Dhar, B. R., Nakhla, G., and Lee, H.-S. (2017) A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews 79: 656-668.

Fonseca, B. C., Guazzaroni, M.-E., and Reginatto, V. (2016) Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. International Journal of Hydrogen Energy 41: 21109-21120.

Gadhe, A., Sonawane, S. S., and Varma, M. N. (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy 40: 4502-4511.

Hafez, H., Nakhla, G., El. Naggar, M. H., Elbeshbishy, E., and Baghchehsaraee, B. (2010) Effect of organic loading on a novel hydrogen bioreactor. International Journal of Hydrogen Energy 35: 81-92.

Hwang, J.-H., Choi, J.-A., Oh, Y.-K., Abou-Shanab, R. A. I., Song, H., Min, B., Cho, Y., Na, J.-G., Koo, J., and Jeon, B.-H. (2011) Hydrogen production from sulfate- and ferrous-enriched wastewater. International Journal of Hydrogen Energy 36: 13984-13990.

Kasap, Y., Şensöğüt, C., and Ören, Ö. (2020) Efficiency change of coal used for energy production in Turkey. Resources Policy 65: 101577.

Kihara, T., Liu, X.-Y., Nakamura, C., Park, K.-M., Han, S.-W., Qian, D.-J., Kawasaki, K., Zorin, N. A., Yasuda, S., Hata, K., Wakayama, T., and Miyake, J. (2011) Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest. International Journal of Hydrogen Energy 36: 7523-7529.

Kim, S.-H., Han, S.-K., and Shin, H.-S. (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry 41: 199-207.

Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U., Moro, A., Muntean, S., Novara, D., Pérez-Díaz, J. I., Quaranta, E., Schild, P., and Theodossiou, N. (2019) Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews 113: 109257.

Kumar, G., Mathimani, T., Rene, E. R., and Pugazhendhi, A. (2019) Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy 44: 13106-13113.

Laurinavichene, T., and Tsygankov, A. (2016) Different types of H2 photoproduction by starch-utilizing co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 41: 13419-13425.

Lay, C.-H., Sen, B., Cheng, Y.-c., Chen, C.-C., and Lin, C.-Y. (2012) Effect of pH switch operation on anaerobic hydrogen production. Sustainable Environment Research 22: 335-342.

Le, D. T. H., and Nitisoravut, R. (2015) Modified hydrotalcites for enhancement of biohydrogen production. International Journal of Hydrogen Energy 40: 12169-12176.

Lee, K. S., Wu, J. F., Lo, Y. S., Lo, Y. C., Lin, P. J., and Chang, J. S. (2004) Anaerobic hydrogen production with an efficient carrier‐induced granular sludge bed bioreactor. Biotechnology and Bioengineering 87: 648-657.

Lens, P., Dijkema, C., and Stams, A. (1998) 13 C-NMR Study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation 9: 179-186.

Lin, C. Y., and Lay, C. H. (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy 29: 41-45.

Liu, G.-X., Wu, M., Jia, F.-R., Yue, Q., and Wang, H.-M. (2019) Material flow analysis and spatial pattern analysis of petroleum products consumption and petroleum-related CO2 emissions in China during 1995–2017. Journal of Cleaner Production 209: 40-52.

Liu, G., and Shen, J. (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. Journal of Bioscience and Bioengineering 98: 251-256.

Liu, I. C., Whang, L.-M., Ren, W.-J., and Lin, P.-Y. (2011a) The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. International Journal of Hydrogen Energy 36: 439-449.

Liu, X.-W., Sun, X.-F., Huang, Y.-X., Sheng, G.-P., Wang, S.-G., and Yu, H.-Q. (2011b) Carbon nanotube/chitosan nanocomposite as a biocompatible biocathode material to enhance the electricity generation of a microbial fuel cell. Energy & Environmental Science 4: 1422-1427.

Liu, Z., Lv, F., Zheng, H., Zhang, C., Wei, F., and Xing, X.-H. (2012) Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy 37: 10619-10626.

Lo, Y.-C., Chen, W.-M., Hung, C.-H., Chen, S.-D., and Chang, J.-S. (2008) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Research 42: 827-842.

McKinlay, J. B., and Harwood, C. S. (2010) Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 21: 244-251.

Mohanraj, S., Anbalagan, K., Kodhaiyolii, S., and Pugalenthi, V. (2014a) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: Effect of Pd (II) ion and phytogenic palladium nanoparticles. Journal of Biotechnology 192: 87-95.

Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., and Pugalenthi, V. (2014b) Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: Evaluation and comparison of the effects. International Journal of Hydrogen Energy 39: 11920-11929.

Morgan, J. W., Evison, L. M., and Forster, C. F. (1991) Changes to the microbial ecology in anaerobic digesters treating ice cream wastewater during start-up. Water Research 25: 639-653.

Mostafa, A., Tolba, A., Gar Alalm, M., Fujii, M., Afify, H., and Elsamadony, M. (2020) Application of magnetic multi-wall carbon nanotube composite into fermentative treatment process of ultrasonicated waste activated sludge. Bioresource Technology 306: 123186.

Nicoletti, G., Arcuri, N., Nicoletti, G., and Bruno, R. (2015) A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion and Management 89: 205-213.

Nikolaidis, P., and Poullikkas, A. (2017) A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67: 597-611.

Oh, Y.-K., Raj, S. M., Jung, G. Y., and Park, S. (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology 102: 8357-8367.

Olabi, A. G., Mahmoud, M., Soudan, B., Wilberforce, T., and Ramadan, M. (2020) Geothermal based hybrid energy systems, toward eco-friendly energy approaches. Renewable Energy 147: 2003-2012.

Oztekin, R., Kapdan, I. K., Kargi, F., and Argun, H. (2008) Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation. International Journal of Hydrogen Energy 33: 4083-4090.

Park, J.-H., Kim, D.-H., Kim, H.-S., Wells, G. F., and Park, H.-D. (2019) Granular activated carbon supplementation alters the metabolic flux of Clostridium butyricum for enhanced biohydrogen production. Bioresource Technology 281: 318-325.

Patel, S. K., Lee, J.-K., and Kalia, V. C. (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian journal of microbiology 58: 529-530.

Pugazhendhi, A., Shobana, S., Nguyen, D. D., Banu, J. R., Sivagurunathan, P., Chang, S. W., Ponnusamy, V. K., and Kumar, G. (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. International Journal of Hydrogen Energy 44: 1431-1440.

Rajesh Banu, J., Kavitha, S., Yukesh Kannah, R., Bhosale, R. R., and Kumar, G. (2020) Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route. Bioresource Technology 298: 122378.

Saady, N. M. C. (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. International Journal of Hydrogen Energy 38: 13172-13191.

Salerno, M. B., Park, W., Zuo, Y., and Logan, B. E. (2006) Inhibition of biohydrogen production by ammonia. Water Research 40: 1167-1172.

Saqib, A. A. N., and Whitney, P. J. (2011) Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy 35: 4748-4750.

Sekoai, P. T., Ouma, C. N. M., du Preez, S. P., Modisha, P., Engelbrecht, N., Bessarabov, D. G., and Ghimire, A. (2019) Application of nanoparticles in biofuels: An overview. Fuel 237: 380-397.

Shafiee, S., and Topal, E. (2009) When will fossil fuel reserves be diminished? Energy Policy 37: 181-189.

Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L., and Pugazhendhi, A. (2020) Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 270: 117453.

Shen, L., Zhou, Y., Mahendran, B., Bagley, D. M., and Liss, S. N. (2010) Membrane fouling in a fermentative hydrogen producing membrane bioreactor at different organic loading rates. Journal of Membrane Science 360: 226-233.

Show, K.-Y., Lee, D.-J., and Chang, J.-S. (2011) Bioreactor and process design for biohydrogen production. Bioresource Technology 102: 8524-8533.

Show, K. Y., Lee, D. J., Tay, J. H., Lin, C. Y., and Chang, J. S. (2012) Biohydrogen production: Current perspectives and the way forward. International Journal of Hydrogen Energy 37: 15616-15631.

Singh, P., and Singh, N. (2019) Political economy of bioenergy transitions in developing countries: A case study of Punjab, India. World Development 124: 104630.

Sinha, P., and Pandey, A. (2011) An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy 36: 7460-7478.

Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W., and Mishra, P. K. (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology 238: 552-558.

Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., Shukla, P., Dubey, K. K., and Mishra, P. K. (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. Biotechnology Advances 37: 107384.

Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., Singh, R., and Ramteke, P. W. (2020) Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource Technology: 123094.

Van Ginkel, S. W., and Logan, B. (2005) Increased biological hydrogen production with reduced organic loading. Water Research 39: 3819-3826.

Vaňáčová, Š., Rasoloson, D., Rázga, J., Hrdý, I., Kulda, J., and Tachezy, J. (2001) Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147: 53-62.

Wang, B., Wan, W., and Wang, J. (2009) Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresource Technology 100: 1211-1213.

Wang, J. (2005) Carbon‐nanotube based electrochemical biosensors: A review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 17: 7-14.

Wang, J., and Wan, W. (2008) Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33: 1215-1220.

Wang, J., and Wan, W. (2009) Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34: 799-811.

Wang, X. J., Ren, N. Q., Sheng Xiang, W., and Qian Guo, W. (2007) Influence of gaseous end-products inhibition and nutrient limitations on the growth and hydrogen production by hydrogen-producing fermentative bacterial B49. International Journal of Hydrogen Energy 32: 748-754.

Wang, Y.-Z., Liao, Q., Zhu, X., Tian, X., and Zhang, C. (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresource Technology 101: 4034-4041.

Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., and Cui, Y. (2011) Three-dimensional carbon nanotube− textile anode for high-performance microbial fuel cells. Nano letters 11: 291-296.

Yang, G., and Wang, J. (2018) Improving mechanisms of biohydrogen production from grass using zero-valent iron nanoparticles. Bioresource Technology 266: 413-420.

Yang, W.-W., and Ponce, A. (2011) Validation of a Clostridium Endospore Viability Assay and Analysis of Greenland Ices and Atacama Desert Soils. Applied and environmental microbiology 77: 2352-2358.

Yang, X., Liu, N., Zhang, P., Guo, Z., Ma, C., Hu, P., and Zhang, X. (2019) The current state of marine renewable energy policy in China. Marine Policy 100: 334-341.

Zhou, P., Elbeshbishy, E., and Nakhla, G. (2013) Optimization of biological hydrogen production for anaerobic co-digestion of food waste and wastewater biosolids. Bioresource Technology 130: 710-718.

謝秉衡 (2017) 以額外添加不同奈米金屬對厭氧醱酵產氫影響之研究。. 博士論文,國立中興大學。.

鄭宥慈 (2018) 共同固定奈米金屬及 C.pasteurianum之暗醱酵產氫可行性研究. 碩士論文,國立中興大學。.

鄭景鴻 (2012) 暗醱酵產氫系統指標微生物組成及功能鑑定分析。. 博士論文,國立中興大學。.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊