跳到主要內容

臺灣博碩士論文加值系統

訪客IP:216.73.216.172
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴建璋
研究生(外文):Jian-Jang Lai
論文名稱:316不銹鋼電化學拋光機制與表面品質改善研究
論文名稱(外文):The study of the electropolishing mechanism on SS316 satinless steel
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shuo-Jen Lee
學位類別:博士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:105
中文關鍵詞:電解拋光多物理量模型表面品質影像檢測鈍化膜分析
外文關鍵詞:Electropolishingmulti-physics modelsurface quality
相關次數:
  • 被引用被引用:2
  • 點閱點閱:984
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
電解拋光技術是屬於一種精密拋光技術,拋光後可以去除材料表面的破壞層,得到平坦、光澤和無殘留應力的表面。而且又具有潔淨、高抗蝕性、無拋光應力、不產生毛邊等優點,廣泛的運用於半導體製程設備、生醫、精密機械製造等領域。
黏稠層被破壞是造成製程不穩定的主因,影響黏稠層的原因主要有電化學作用、流體擾動和氣泡。尤其,反應過程中所產生的氣泡,造成溶液被過度擾動,嚴重破壞擴散層的穩定性。所以,在製程穩定性不佳的情況下,製程精度不好掌控,並容易產生流痕、孔蝕等缺陷於工件表面上,降低表面品質。
為了改善製程的穩定性,本研究針對目前使用的電解液進行改良,透過實驗設計法的協助,找出減少氣泡生成,增加穩定性的添加劑,與最佳添加量。透過長效時間實驗,以表面粗糙度和電解液金屬濃度為指標,推測出電解液的壽命,達到提高對電解液性能與穩定度的目標。
本研究建立電解拋光物理模型,討論電荷分布與擴散作用對電解拋光製程的影響。採用商用軟體,FEMLAB,建立3維的物理模型,模擬在不同陰極電極面積、陰極形狀和間隙下,表面電荷濃度分布的情況。再以表面輪廓儀,量測去除量的分布,探討去除量和電荷濃度分布的關係,釐清參數真正影響的關係。並找出改善加工精度的參數範圍,提高參數控制與治具設計的能力。針對物理模型所找出的參數範圍,進行實驗,以表面機械性質與表面化學電化學性質為評估指標,評斷表面品質改善的效果,藉由實驗的方式,找出最佳參數,以獲得高精度與品質的拋光效果。
透過本研究所建立之物理模型,與對參數作用的了解,可以快速評斷陰極設計的效果,加快陰極設計的流程,並找出加工精度較高的參數設定區間,再對此區間進行實驗,以得最佳的參數,相較於先前的方法,在陰極設計與找尋最佳參數上,顯得更有效果與效率。
本研究亦建立一套完整的表面評估程序,透過高敏感度的表面缺陷影像辨識系統,與粗糙度量測,成為一有效、快速且辨識度高的表面機械性質評估指標,可以輕易辨識不同參數所造成的影響。再配合快速、大範圍且低廉的腐蝕評估,評估鈍化層的性能,對於參數改善與拋光效果的提升,有很大的助益。
透過上述的研究,將可提供一快速導入新應用的方法,快速完成陰極設計並取得最佳參數,減少嘗試錯誤所需的時間,達到提升製程穩定度和均勻性的目標。
The electropolishing(EP) is a surface finishing treatment technique. The surface quality indices such as surface roughness, cleanness and corrosion resistance could be improved through this process. Therefore, the electropolishing process was widely used to fabricate high cleanness apparatus for semiconductor optical and pharmaceutical industries.
The electropolishing is an electrochemical process. The uniform and stable viscous layer was the key mechanism in enhancing the surface quality. The forming of viscous layer was influenced by the current distribution, gas bubble, fluid field and diffusion phenomena. Therefore, undesirable topology such as pitting, flow marks and scrape could be found after the electropolishing process which also reduces geometrical precision.
This study is foci on numerical simulation and experimental measurement of the EP process. A numerical simulation model is established with process variables of operating potential, electrode area ratio, electrode geometry and electrode gap to simulate the iron concentration distribution on the surface of specimen. Based on the simulated results, proper process variables were chosen to conduct the EP experiments. From the experiments, profiles of the original and processed specimen were then measured by surface profile scanning machine to verify the simulation results. It could establish a relationship between iron concentration and metal removal. The results showed that the simulated iron concentration distribution data did emulate the topological contour.
In this study, the surface topological and chemical properties were also studied. The indices such as surface roughness and defects were employed to evaluate the surface topological properties. The corrosion resistance such as uniform corrosion, intergranular corrosion, pitting corrosion and XPS/AES were employed to evaluate the passive film properties. The optical surface defects analysis exhibits good capabilities of high sensitivity, wider range of measurement and high efficiency to identify the surface quality under different process variables. It also provides the evidence to confirm the improvement of surface quality and stability of the EP process.
In summary, a new methodology has been developed which could greatly improve the stability and uniformity of the EP process. It also provides an efficient way for electrode design, optimize process parameters and save the time of try-and-error.
摘要 1
Abstracts 3
1. 緒論 5
1.1 研究背景與目的 5
1.2 研究目標 6
1.3 論文架構 7
2. 文獻回顧 9
2.1電解拋光(EP)原理 10
2.2影響製程的物理現象 12
2.3拋光參數 14
3. 研究架構與方法 17
3.1電解拋光製程加工精度提升研究 18
3.1.1物理模型建立 19
3.1.2去除量分布量測系統建立 21
3.1.3去除特徵驗驗證實驗 23
3.2 表面品質改善研究 24
4. 電解拋光製程加工精度提升研究 27
4.1問題描述 27
4.2電荷分布模型建立 29
4.3 實驗結果與討論 31
4.3.1電荷分布(長方形陰極,陰陽極面積比1:1) 32
4.3.2電荷分布(圓陰極,陰陽極面積比1:1) 34
4.3.3電荷分布(長方形陰極,陰陽極面積比1.5:1) 36
4.3.4電荷分布(圓形陰極,陰陽極面積比1.5:1) 38
4.3.5電荷分布(長方形陰極,陰陽極面積比2:1) 40
4.3.6電荷分布(圓形陰極,陰陽極面積比2:1) 42
4.3.7小結 44
4.4陽極電荷分布方程式 45
4.5擴散模型建立 47
4.5.1濃度分布 (間隙3mm,長方形陰極,面積比1) 48
4.5.2濃度分布 (長方形陰極,面積比1.5) 49
4.5.3濃度分布 (長方形陰極,面積比2) 50
4.5.4濃度分布 (圓形陰極,面積比1) 52
4.5.5濃度分布 (圓形陰極,面積比1.5) 53
4.5.6濃度分布 (圓形陰極,面積比2) 54
4.6表面去除量分布量測實驗 56
4.7去除量分布方程式建立 62
4.7.1 間隙3mm的去除量分布方程式 62
4.7.2 間隙5mm的去除量分布方程式 63
4.8 驗證實驗 65
5. 電解拋光表面品質改善研究 68
5.1問題描述 68
5.2電解液改善研究 68
5.2.1降低氣泡影響研究 69
5.2.2壽命評估 74
5.3表面機械性質改善研究 76
5.3.1表面缺陷評估研究 82
5.4 表面化學電化學性質改質研究 86
5.4.1 均勻腐蝕(Uniform corrosion)測試研究 86
5.4.2 晶界腐蝕腐(Intergranular corrosion, IGC)蝕測試實驗 88
5.4.3 孔蝕測試(Pitting corrosion)實驗 90
5.5 鈍化膜成份分析 95
6. 結論與未來展望 100
6.1 結論 100
6.2 未來展望 100
1.C. L. Faust, “Electropolishing — stainless steel part I,” Metal finishing, pp. 21-25, July, 1982.
2.C. L. Faust, “Electropolishing II: the practical side,” Metal finishing, pp. 59–63, August, 1982.
3.K. B. Hensel, “Surface trements -electropolishing,” Metal finishing, 1989.
4.Steven Burgess, “Electropolishing as a pretreatment,” Product finishing, 1983.
5.D. Landolt, P. F. Chauvy and O. Zinger, “Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments,” Electrochimica acta, Vol. 48, pp. 3185-3201, 2003.
6.J. S. Newman, Electrochemical system, second edition, Prentice Hall, 1991
7.M. data and D. Landolt, “Fundamental aspects and applications of electrochemical microfabrication,” Electrochimica acta, vol. 45, pp. 2535-2558, 2000.
8.C. Cleric and D. Landolt, “On the theory of anodic leveling: FEM simulation of the influence of profile shape and cell geometry,” Electrochemica acta, Vol. 29, No. 5, pp. 787-795, 1994.
9.M. Matloze, “Modeling of impedance mechanisms in electropolishing,” Electrochemica acta, Vol. 40, No. 4, pp. 393-401, 1995.
10.I. Nirdosh and G. H. sedahmed, “Mass transfer study of the electropolishing of horizontal and vertical rectangular ducts under free convection conditions,” Chem. Eng. technol., Vol. 25, pp. 315-319, 2002.
11.I. Nirdosh and G. H. sedahmed, “A mass transfer study of the diffusion controlled dissulation of cubical cavities under natural convection conditions,” Int. comm. heat mass transfer, Vol. 23, pp. 633-642, 1996.
12.G. H. sedahmed, M. S. Abdo and M. A. Kamal, “A mass transfer study of the electropolishing of metals in mechanically agitated vessels,” Int. comm. heat mass transfer, Vol. 28, pp. 257-265, 2001.
13.S. L. Marshall and S. K. Wolf, “Analysis of terminal effects in rectangular electrochemical cells,” Electrochimica acta, Vol. 43, pp. 405-415, 1998.
14.V. P. Zhdanov and B. Kasemo, “Kinetics of electrochemical reactions: from single crystals to nm-sized supported particles,” Surface science, Vol. 521, pp. 655-661, 2002.
15.M. A. Ibrahim, “Improving the throwing power of acidic zinc sulfate electroplating baths,” J. chem.. Thecnol biotechnol, Vol. 75, pp. 745-755, 2000.
16.T. Hryniewicz, “Concept of microsmoothing in the electropolishing process,” Surface and coatings technology, Vol. 64, pp. 75-80, 1994.
17.K. S. Raman, S. Murali, M. Ramachandra and K. S. S. Murthy, “Development of electropolishing techniques on metals and alloys,” Practical metallographic, Vol. 33, No. 7, pp. 359-368, 1996.
18.O. Piotrowski, C. Madore and D. Landolt, “Electropolishing of tantalum in sulfuric acid-methanol electrolytes,” Electrochimica acta, Vol. 44, pp. 3389-3399, 1999.
19.E. S. Lee, “Machining characteristics of the electropolishing of stainless steel (STS316L),” Int. Journal Adv. Manuf Technol, Vol. 16, pp. 591-599, 2000.
20.R. Dargis, “Chemical polishing and electropolishing,” Products finishing, 1989.
21.G. E. Pessine and J. Elisabete, “Pulse current plating of TiB2 in molten fluoride,” Electrochimica acta, Vol. 44, Issue 17, April 15, pp. 2859-2870, 1999.
22.L. Binder, “Effects of direct and pulse current on electrodeposition of manganese dioxide,” Journal of power sources, Vol. 111, Issue 2, pp. 248-254, 2002.
23.M. Matlosz and D. Landolt, “Shape changes in electrochemical polishing: the effect of temperature on the anodic leveling of Fe-24Cr,” J. Electrochem. Soc., Vol. 136, No. 4, pp. 919-929, 1989.
24.C. Cleric and D. Landolt, “On the theory of anodic leveling: FEM simulation of the influence of profile shape and cell Geometry,” Electrochemica acta, Vol. 29, No. 5, pp. 787-795, 1994.
25.R. D. Cormia, B. Schiefelbein and P. A. Olsen, “Electropolishing of stainless steel: meeting the materials requirements for today’s demanding applications,” Photo chemical machining institute, 1990.
26.Denny A . Jones, Principles and prevention of corrosion, Macmillan publishing Company, 1992.
27.P. Záhumenský, S. Tuleja and J. Orseágová, “Corrosion resistance of 18Cr-12Ni-2,5Mo steel annealed at 500-1050℃,” Corrosion science, 1999.
28.Q. Y. Pan, W. D. Huang and G. L. Zhang, “The improvement of localized corrosion resistance in sensitized stainless steel by laser surface relenting,” Surface & coating technology, Vol. 102, 1998.
29.R. Guerrero, M. H. Farias and L. Cota-Araiza, “Surface analysis of the environmental corrosion of zinalco (Zn-22Al-2Cu) alloy,” Applied surface science, Vol. 195, 2002.
30.M. H. Cotterrell, R. E. J. Noel and C. Allen, “Pitting behaviour of corrosion resistant steels in synthetic mine waters: part1,” Br. Corros. J., Vol. 25, No. 1, 1990.
31.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-Ray photoelectron spectroscopy, Physical electronics, 1995.
32.D. C. Montgometry, Design and analysis of experiments, John wiley, 2001.
33.K. Ramar, S. Arumugam, S. N. Sivanandam, L. Ganesan, and D. Manimegalai, “Quantitative fuzzy measures for threshold selection,” Pattern Recognition Letters, Vol. 21, pp. 1-7, 2000.
34.A. G. Shanbhag, “Utilization of Information Measure as a Means of image Thresholding,” Graphical Models and Image Processing, Vol. 56, No. 5, September, pp. 414-419, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 28、胡敏遠:<從能源的觀點研析中亞地區的地緣戰略>,《國防雜誌》,(2002年07期)。
2. 27、胡敏遠:<美國在北韓「六方會談」中的角色分析:霸權穩定理論的觀點>,《國防雜誌》,(2006年01期)。
3. 25、邱坤玄:<霸權穩定論與冷戰後中(共)美權力關係>,《東亞季刊》,(2000年03期)。
4. 20、李登科:<冷戰後中共大國外交策略之研究>,《國際關係學報》,(2000年15期)。
5. 18、李和:<中國大陸的改革路徑與意涵>,《中國大陸研究》,(2004年04期)。
6. 16、宋學文 :<探討霸權穩定論:一個國際關係理論演化的研究方法>,《問題與研究》,(2004年02期)。
7. 15、宋興洲 :<區域主義與東亞經濟合作>,《政治科學論叢》,(2005年24期)。
8. 14、宋鎮照 :<解析當前美中兩國亞太政策下的東南亞發展策略>,《展望與探索》,(2003年07期)。
9. 12、朱景鵬:<歐洲聯盟與中共雙邊互動經驗之探討-兼論歐盟之對外關係>,《遠景季刊》,(2002年02期)。
10. 11、王慶瑜:<正視兩個國際經濟板塊劇烈運動對台的衝擊>,《長榮學報》,(2001年01期)。
11. 10、王高成著:<戰爭的研究:一個現實主義的觀點>,《哲學與文化》,(2004年第31卷第4期)。
12. 6、方華:<分析中共領導人頻密訪歐與雙邊關係發展>,《中共研究》,(2004年08期)。
13. 4、丁偉:<經濟發展與國際責任:以中國為例>,《亞洲研究》,(2004年49期)。
14. 36、許志嘉:<後鄧小平時期中共外交政策的持續與轉變>,《國際關係學報》,(2000年15期)。
15. 37、陳子平:<美國2005年「中共軍力報告」研析-中共思維的轉變>,《國防雜誌》,(2005年10期)。